At-Column Dilution for Increased Purification Performance

Uwe D. Neue
Thomas E. Wheat
Cecilia B. Mazza
Jie Y. Cavanaugh
Waters Corporation, 34 Maple St
Milford, MA 01757, USA

Pittsburgh Conference 2003, Orlando, Florida
Outline

- At-Column-Dilution Techniques
 - Sample in organic solvent
 - Sample in ionic form
- Reason for Difficulties with DMSO
- Conclusion
At-Column-Dilution Techniques

- Sample in organic solvent
- Sample in ionic form

Reason for Difficulties with DMSO

Conclusion
Purpose of At-Column Dilution

The problems

- Sample solubility in the mobile phase – especially in gradient chromatography
- Can be improved by using a sample solvent that is a strong eluent (e.g. DMSO)
- A sample in the salt form is highly soluble in water, but the salt form has the disadvantage of low retention for preparative chromatography

The solution:

- At-Column Dilution
Supplementary Techniques: At-Column-Dilution

Standard System

At-Column-Dilution System

- **Autosampler**
- **Gradient Pump**: 30mL/min 95:5
- **Column**
- **Loading Pump**: 1.5 mL/min 100% CH₃CN

- **Autosampler**
- **Gradient Pump**: 28.5 mL/min gradient mobile phase
- **Tee**: 30mL/min 95:5
- **Column**
Outline

- At-Column-Dilution Techniques
 - Sample in organic solvent
 - Sample in ionic form
- Reason for Difficulties with DMSO
- Conclusion
Solving Sample Problems: Sample Dissolved in DMSO

- Sample pump feeds MeCN at 1/20th of the total flow
- Gradient system delivers gradient from 0\% to 90\% at 19/20th of the total flow
- No peak distortion due to DMSO - high load of 10 \textit{mg/g} possible!
Sample in DMSO

Sample: 20 mg/mL\(^{-1}\) each of diphenhydramine, oxybutynin and terfenadine in 2 mL of DMSO
Column: XTerraPrep® MS C\textsubscript{18} 19 mm x 30 mm with 19 mm x 10 mm guard cartridge

Same sample, at-column dilution

Mazza
Synthesis of XTerra® Particles

Tetraethoxysilane

Organofunctional triethoxysilane

Polyethoxyoligosiloxane Polymer

Porous Hybrid Particles

First generation Hybrid, $R = \text{CH}_3$

Characterized by %C, SEM, TGA, BET, NMR

Patent Pending

$SA = 140 - 330$ m2/g

$TPV = 0.4 - 1.0$ cc/g

$MPD = 90 - 300$ Å
At-Column-Dilution Example 3: under Basic Conditions

Diphenhydramine 20 mg/mL, Load 40 mg
Column: XTerra® MS C18 19 X 50 mm
Monitor: 254 nm

With At-Column Dilution

Diphenhydramine 20 mg/mL, Load 40 mg
Column: XTerraPrep® MS C18 19 X 50 mm
Monitor: 254 nm

Buffers
A 100% H2O Flow rate: 30 ml/min
B Acetonitrile
C 100 mM NH4HCO3, pH 10

Gradient
<table>
<thead>
<tr>
<th>Time</th>
<th>Flow</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>30</td>
<td>90</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>2.5</td>
<td>30</td>
<td>90</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>2.6</td>
<td>30</td>
<td>55</td>
<td>40</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>30</td>
<td>5</td>
<td>90</td>
<td>5</td>
</tr>
<tr>
<td>6.3</td>
<td>30</td>
<td>5</td>
<td>90</td>
<td>5</td>
</tr>
<tr>
<td>6.6</td>
<td>30</td>
<td>90</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
DMSO is often the preferred solvent
DMSO is a strong eluent in RPLC
Loading in the solvent used at the beginning of the gradient is preferred
At-column dilution makes this possible
Significant increases in loadability (5- to 10-fold) are possible
Outline

- At-Column-Dilution Techniques
 - Sample in organic solvent
 - Sample in ionic form
- Reason for Difficulties with DMSO
- Conclusion
Solving sample problems: Polar ionic sample in salt form

- 50-100x higher load if sample is not ionic
- Sample pump feeds sample in ionic form
- Sample is converted to non-ionic form at a high buffer concentration at the beginning of the gradient
- Reversed-phase gradient is executed at low buffer concentration
Loadability Improvement at High pH (800 mg Load)

Column: XTerra® Prep MS C_{18} 19 x 50 mm, 5 µm
Gradient: Equilibrated for 5 min at 5% ACN, then gradient \(tg = 5 \text{ min, } 5 \text{ to } 90 \% \text{ ACN, and hold at } 90\% \text{ ACN for } 1 \text{ min,} \) The mobile phases contain 10 mM NH_{4}HCO_{3}, pH 10.0.
Flow Rate: 30 mL/min.
Analyte: Diphenhydramine (800 mg) dissolved in H_{2}O.

With At-Column Dilution:
200 mM NH_{4}HCO_{3}, pH 10

Standard Loading from Water

Diphenhydramine
Hydrochloride salts of basic compounds give low retention in reversed-phase HPLC due to the ionization of the sample.

The solubility of this sample at high pH is low, since the sample is non-ionic.

However, using the at-column-dilution methodology, loading the sample with water and doing chromatography at high pH eliminates the precipitation and we take advantage of high loadability of bases at high pH.
Outline

- At-Column-Dilution Techniques
 - Sample in organic solvent
 - Sample in ionic form
- Reason for Difficulties with DMSO
- Conclusion
Propyl Gallate
Sample dissolved in DMSO
Chromatography run at pH 3.8

Mazza
At-Column Dilution Improves Impurity Isolation

5.6X increase in mass load by using DMSO as sample solvent and at-column-dilution method

Sample: Propyl Gallate dissolved in DMSO

XTerra® MS C$_{18}$ 4.6 x 50 mm
Load: 1.8 mg

XTerra® MS C$_{18}$ 19 x 50 mm
At-Column Dilution
Load: 30 mg
Injection volume: 0.3 mL
Comparison of Sample Solvents

- Acetonitrile
- Dimethylsulfoxide
- Isopropanol
- Methanol
- Tetrahydrofuran

Mazza
Viscosity Maxima of Mixtures of Water with Solvent

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Viscosity (Neat Solvent) [cP]</th>
<th>Viscosity Maximum [cP]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetonitrile</td>
<td>0.37</td>
<td>1.1</td>
</tr>
<tr>
<td>Dimethylsulfoxide</td>
<td>2.2</td>
<td>4.1</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>2.5</td>
<td>3.6</td>
</tr>
<tr>
<td>Methanol</td>
<td>0.6</td>
<td>1.7</td>
</tr>
<tr>
<td>Tetrahydrofuran</td>
<td>0.46</td>
<td>1.9</td>
</tr>
</tbody>
</table>

The **hydrophobicity** of the solvent is only part of the problem. The high **viscosity** of DMSO/water mixtures is the primary cause of the difficulties with DMSO!!!
Outline

- At-Column-Dilution Techniques
 - Sample in organic solvent
 - Sample in ionic form
- Reason for Difficulties with DMSO
- Conclusion
At-Column Dilution Conclusions

- Successfully demonstrated the use of at-column-dilution with drugs dissolved in DMSO
- Successfully demonstrated the use of at-column-dilution with bases dissolved in water and carried out the chromatography at high pH.
- Generally, at-column dilution solves the conflict between good sample solubility and good chromatography
- The primary reason for the difficulties with DMSO is the viscosity of the DMSO/water mixture
Diagram of At-Column Dilution

Water with a low buffer concentration feeds the sample.

Gradient starts at a high buffer concentration to load sample onto column in a non-ionic form at the beginning of the gradient.
At-Column Dilution: Example 1

- Samples: Sulfadruugs
- Evaluation of Injection Conditions
- Large Sample Load: 800 mg
- Conditions:

 Column: Symmetry® C₁₈, 19 mm x 50 mm, 5 µm
 Gradient: A: Water; B: Acetonitrile; C: 1% Formic Acid
 0 - 0.5 min: 85% A, 5% B, 10% C
 5.5 min: 0% A, 90% B, 10% C
 Flow Rate: 30 mL/min
 Samples: Sulfanilamide, Sulfathiazine and Sulfasoxazole
 Sample dissolved in DMSO
At-Column Dilution:
Monitor All Components

800 mg Total Load in 2000 µL DMSO on a 19 mm x 50 mm 5 µm Symmetry® C₁₈ Column

Standard Injection

At-Column Dilution

Wheat
Sample Dissolved in DMSO: Single-Ion Chromatogram of Peak 3

Standard Injection

Same Compound !!!

At-Column Dilution

800 mg Total Load in 2000 µL DMSO on a 19 mm x 50 mm, 5 µm Symmetry® C₁₈ Column

Wheat