Principles and Practices for SEC, IEX for Intact Protein Analysis by UPLC

anders_feldthus@waters.com
Agenda

- Ion-Exchange Chromatography
 - Theory and practice
 - Protein-Pak Hi Res IEX Columns
 - Method Development Strategies

- Size-Exclusion Chromatography
 - ACQUITY UPLC for SEC
 - ACQUITY BEH200 SEC, 1.7 µm Columns
 - ACQUITY BEH125 SEC, 1.7 µm Columns
 - Insulin Analysis
 - Combination of SEC and MS
Ion-Exchange Chromatography

- Separations are based on net surface charge on protein with oppositely charged groups on ion-exchanger.

- Proteins elute from column using either a gradient of increasing salt concentration (most common) or changing pH (less common).
Select buffer pH
Isoelectric Point of a Protein (pI)

Isoelectric point (pI)
Zero net charge at this pH
Select buffer pH
Isoelectric Point of a Protein (pI)

- pH below pI
 Protein has net +ve charge
 pH region **cation** exchange

- pH above pI
 Protein has net -ve charge
 pH range for **anion** exchange
- Select buffer with pKa near to desired pH
- Buffer ions should have same charge as functional groups on packing material (PO$_4^-$ for cation, Tris$^+$ for anion)
Common Customer Concerns

- Reproducibility between columns
- Not getting required resolution from the start
- Recovery and carryover
Protein-Pak Hi Res IEX

<table>
<thead>
<tr>
<th>Description</th>
<th>Protein-Pak Hi Res Q</th>
<th>Protein-Pak Hi Res CM</th>
<th>Protein-Pak Hi Res SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ion Exchange</td>
<td>Strong Anion</td>
<td>Weak Cation</td>
<td>Strong Cation</td>
</tr>
<tr>
<td>Functional Group</td>
<td>Quaternary ammonium</td>
<td>Carboxymethyl</td>
<td>Sulfopropyl</td>
</tr>
<tr>
<td>Matrix</td>
<td>Hydrophilic polymer</td>
<td>Hydrophilic polymer</td>
<td>Hydrophilic polymer</td>
</tr>
<tr>
<td>Particle size (μm)</td>
<td>5</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Pore size</td>
<td>Non porous</td>
<td>Non porous</td>
<td>Non porous</td>
</tr>
<tr>
<td>i.d. x L (mm)</td>
<td>4.5 x 100</td>
<td>4.5 x 100</td>
<td>4.5 x 100</td>
</tr>
<tr>
<td>Counter ion</td>
<td>Cl⁻</td>
<td>Na⁺</td>
<td>Na⁺</td>
</tr>
<tr>
<td>pH range</td>
<td>3-10</td>
<td>3-10</td>
<td>3-10</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>10-60</td>
<td>10-60</td>
<td>10-60</td>
</tr>
<tr>
<td>pKa</td>
<td>10.5</td>
<td>4.9</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Flow Rates: 0.3-0.6 mL/min 0.5-1.4 mL/min 0.5-1.4 mL/min

\[^{1}\text{Approx Protein Binding Capacity in mgs per column (i.e., BSA for Hi Res Q Column, Lysozyme for Hi Res CM and Hi Res SP Columns)}\]

58 33 25

\[^{1}\text{For optimal resolution of complex samples, do not exceed 20% of the column’s protein binding capacity.}\]
Attributes of Protein-Pak™ Hi Res IEX Columns

- Multi-layered network of ion-exchange groups (SP, CM or Q)
 - Effective diffusion and binding
 - High sample loading and resolution
 - Minimal non-desired interactions

- No MW limitations: non-porous material

- QC tested with protein samples for batch-to-batch reproducibility

- High chemical stability: hydrophilic, polymer-based IEX particles
 - Wide pH range (3-10)
 - High salt concentrations (1M)
 - Standard pressures (up to 1450 psi for CEX and 2175 psi for AEX)
 - Can be cleaned with aggressive washing

- eCord enabled for data tracking
Strategies to Developing an Ion-Exchange Protein Separation

- Selectivity is most conveniently optimized with pH
- Retention is optimized by adjustment of ionic strength
- Changing buffer and counter ion may improve selectivity
- Methods may require adjustment if the temperature is changed
Effect of pH on Selectivity

pH 6.6

1. α-Chymotrypsinogen
2. Ribonuclease A
3. cytochrome c

pH 5.0

1. α-Chymotrypsinogen
2. Ribonuclease A
3. cytochrome c

- Column: Protein-Pak Hi Res CM 4.6 x 100 mm column
Fine tune pH

pH Effect on mAb Separation

- **Column:** Protein-Pak Hi Res CM 4.6 x 100 mm column
- **Gradient:** 0.0 - 0.10 M NaCl, 20mM Sodium Phosphate in 40 min
- **Flow:** 0.5 mL/min

Graphs:
- **pH 6.4**
- **pH 6.6**
- **pH 6.8**
Effect of Salt Gradient Slope

- Higher salt gradients result in earlier elution of bound proteins
- High salt wash may be needed in shallower gradients to elute tightly bound proteins
- Column: Protein-Pak Hi Res CM 4.6 mm x 100mm

<table>
<thead>
<tr>
<th>Protein</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ovalbumin</td>
<td>1</td>
</tr>
<tr>
<td>Myoglobin</td>
<td>2</td>
</tr>
<tr>
<td>Ribonuclease A</td>
<td>3</td>
</tr>
<tr>
<td>Cytochrome C</td>
<td>4</td>
</tr>
<tr>
<td>Lysozyme</td>
<td>5</td>
</tr>
</tbody>
</table>

©2012 Waters Corporation
Effect of Salt Gradient Slope: Ovalbumin Variants

- Longer gradient: increased resolution, lower sensitivity
- Column: Protein-Pak HI Res Q, 4.6 x 100 mm
Buffer can alter selectivity and retention of proteins at same pH (6)

- Column: Protein-Pak Hi Res CM 4.6 x 100 mm column
Counter ion may change selectivity and retention of proteins

- Effects tend to be minimal
Temperature Effects

- Changes may be similar to those observed with pH change
- Column: ProteinP-ak Hi Res CM 4.6 x 100 mm column
IEX Summary

- Protein-Pak Hi Res IEX column benefits
 - Consistent batch-to-batch performance (tested with protein standards)
 - Minimal column related carryover
 - Stable over a wide pH range

- Method Parameters to optimize are
 - Selectivity is most conveniently optimized with pH
 - Retention is optimized by adjustment of ionic strength
 - Changing buffer and counter ion may improve selectivity
 - Methods may require adjustment if the temperature is changed
Agenda

- Ion-Exchange Chromatography
 - Theory and practice
 - Protein-Pak Hi Res IEX Columns
 - Method Development Strategies

- Size-Exclusion Chromatography
 - ACQUITY UPLC for SEC
 - ACQUITY BEH200 SEC, 1.7 µm Columns
 - ACQUITY BEH125 SEC, 1.7 µm Columns
 - Insulin Analysis
 - Combination of SEC and MS
Common Customer Concerns

- Column-to-column reproducibility
 - Changes in retention time
 - Changes in spacing between peaks
 - Changes in resolution
- Column lifetime
 - Peak shape deteriorates over time
 - Increased pressure
 - Changes in resolution
- Tailing of specific proteins
- Resolution
- Throughput
UPLC-SEC vs HPLC-SEC of mAb monomer and aggregates

ACQUITY BEH200 SEC, 1.7 µm 4.6 x 300 mm

HPLC 100% Silica-Diol SEC 250Å 5µm 7.8 x 300 mm

2.26 % Aggregate

2.24 % Aggregate

©2012 Waters Corporation
Larger system dispersion decreases component resolution

HPLC System

- BEH200 SEC 1.7um Column (4.6 x 300mm)
- USP Res= 1.37

Waters ACQUITY UPLC System

- BEH200 SEC 1.7um Column (4.6 x 300mm)
- USP Res= 2.37
Application Areas

- Determination of protein molecular weight
- Molecular weight range of 10,000 to 450,000 Daltons
- Determination of size heterogeneity in a protein sample
- Quantitation of protein aggregates primarily in therapeutic monoclonal antibodies.
The packing material is based on our patented Bridged Ethyl Hybrid base particle and effective diol bonding, which provide a stable chemistry with minimal secondary interactions.

- Significant reduction of undesired secondary interactions respect 100% Silica-Based Diol coated Columns
BEH200 SEC, 1.7um Column Batch Test

<table>
<thead>
<tr>
<th>Analyte</th>
<th>pI</th>
<th>MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Thyroglobulin, 3 mg/mL</td>
<td>4.6</td>
<td>669,000</td>
</tr>
<tr>
<td>2. IgG, 2 mg/mL (Vicam)</td>
<td>6.7</td>
<td>150,000</td>
</tr>
<tr>
<td>3. BSA, 5 mg/mL</td>
<td>4.6</td>
<td>66,400</td>
</tr>
<tr>
<td>4. Myoglobin, 2 mg/mL</td>
<td>6.8, 7.2</td>
<td>17,000</td>
</tr>
<tr>
<td>5. Uracil, 0.1 mg/mL</td>
<td>N/A</td>
<td>112</td>
</tr>
</tbody>
</table>
BEH200 SEC, 1.7um
Batch-to-Batch Reproducibility

Batch 1, Column 1

Batch 1, Column 2

Batch 1, Column 3

Batch 2, Column 1

Batch 2, Column 2
What’s new?

- BEH 125 SEC UPLC Column
 - 15 cm/30 cm/Guard
 - Launched on January 10th
 - Linear range from 1.000 to 80.000 Dalton

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>186006504</td>
<td>ACQUITY UPLC BEH125 SEC 1.7µm 4.6x30 Gd</td>
</tr>
<tr>
<td>186006505</td>
<td>ACQUITY UPLC BEH125 SEC 1.7µm 4.6x150mm</td>
</tr>
<tr>
<td>186006506</td>
<td>ACQUITY UPLC BEH125 SEC 1.7µm 4.6x300mm</td>
</tr>
</tbody>
</table>
Calibration Curves for ACQUITY UPLC BEH200 and BEH125, SEC, 1.7 μm Columns

BEH200, SEC, 1.7μm

Thyroglobulin (~ 669,000 Da)
IgG (~ 150,000 Da)
Conalbumin (~ 75,000 Da)
Rnase A (~ 13,700 Da)
Ovalbumin dimer (~ 88,000 Da)
Ovalbumin (~ 44,000 Da)
Aprotinin (~ 6,500 Da)
Angiotensin II (~ 1,045 Da)

BEH125, SEC, 1.7μm

Uracil (~ 112 Da)
Resolution of Proteins and Peptides

- Conditions: 25mM Sodium Phosphate, 150mM Sodium Chloride, pH 6.8, 0.4 mL/min
- BEH125 column provides increased resolution throughout the lower end of the peptide mass range (132 29,000).
Insulin Analyses by Traditional HPLC-SEC vs UPLC-SEC

Waters Alliance HPLC System
Insulin HMWP SEC 10 µm (7.8 x 300mm)

Waters ACQUITY UPLC System
BEH125, SEC, 1.7 µm (4.6 x 300mm)

©2012 Waters Corporation
Over 800 injections the retention time of the insulin monomer peak and the resolution between insulin monomer and dimer peaks are maintained.
What about SEC – MS?
MS: Xevo G2 Q Tof
- Conditions: 100mM Ammonium Formate, Flow rate: 0.15 mL/min on BEH200 15 cm
- Post UV detection additive: ACN, 0.8% Formic acid
Extracted Spectrum

Intact IgG
MW 148,221
Peak 1

Clip
MW 100,764
Peak 2

Low MW Species
Peak 3

- Deconvoluted molecular weight determined using MaxEnt1
Summary: Waters ACQUITY UPLC SEC System Solution

- New SEC column chemistries based on BEH particles
- True UPLC separation
- Application benefits
 - Reduced secondary interaction
 - Improved physical and chemical column lifetime
 - Improved column-to-column reproducibility
 - Improved resolution
 - Improved throughput
- Synergistic combination of UPLC system and column
- Higher throughput compared to traditional HPLC
Multi-Mode Chromatography
Automated with ACQUITY UPLC H-Class Bio
Mouse Ascites Fluid

SEC
ACQUITY UPLC BEH200
4.6x150mm
0.5mL/min
20mM Na phosphate,
pH 6.8 150mM NaCl

Cation Exchange
Protein-Pak Hi Res SP
4.6x100mm
0.5mL/min
20mM phosphate
pH 6
0-250mM NaCl
20mins

Anion Exchange
Protein-Pak Hi Q
4.6x100mm
0.5mL/min
20mM Tris
pH 7.5
0-250mM NaCl
20mins

©2012 Waters Corporation
Interesting Application Notes/posters on IEX and SEC

- IEX Method Development of a Monoclonal Antibody and Its Charge Variants [720003836en](www.waters.com) on www.waters.com
- Multi-Mode Analytical Separations of Proteins [720003854en](www.waters.com) on www.waters.com
- Improving the Lifetime of UPLC Size-Exclusion Chromatography Columns Using Short Guard Columns [720004034en](www.waters.com) on www.waters.com
- Technology Brief with SEC and IEX guidelines [720004182en](www.waters.com) on www.waters.com
- Technology Brief on SEC with MS [720004018en](www.waters.com) on www.waters.com
Looking for more info?

Bioseparations and Analyses
2010-2011

Peptides
Unique family of columns that meet the demanding requirements of peptide separations, from proteomics and peptide mapping to isolation.

Oligonucleotides
Innovative columns and sample preparation products for the isolation and analysis of single-stranded DNA, RNA or “hybrid” synthetic oligonucleotides.

Amino Acids
Proven pre-column derivatization chemistries for Amino Acid Analysis with HPLC-based PicQ-Taq and AccQ-Taq, and the holistically designed and optimized UPLC-based Amino Acid Analysis Application Solution.

Proteins
Wide selection of UPLC and HPLC columns for protein isolation and characterization that ensure high-quality, reproducible separations.

Glycans
Waters ACQUITY UPLC® BEH Glycan column was specifically developed and QC tested to provide consistent and remarkable UPLC® component resolution for a range of glycan structures.

MS and LC/MS Consumables for Biomolecules
The MassPREP™ family of products includes conveniently packaged, highly purified standards, specialty plates, and kits. Waters MS and LC/MS consumables are easy-to-use and manufactured to meet stringent quality control requirements.

©2012 Waters Corporation