A Systematic Approach Towards UPLC Methods Development

Christopher J. Messina, Eric S. Grumbach, and Diane M. Diehl
Waters Corporation, Milford, MA, USA

APPLICATION BENEFITS

- Demonstrates a systematic approach to method development
- Selectivity is manipulated using pH, column chemistry, and organic modifier
- UPLC provides a 6-fold improvement in throughput, reducing time and cost per sample in the analysis

INTRODUCTION

Reversed-phase HPLC methods development can take anywhere from weeks to months, incurring large operational cost. By utilizing UltraPerformance LC™ (UPLC) Technology for methods development, a 6-fold improvement in throughput can be realized. This, in turn, reduces cost per sample and time of analysis considerably while maintaining or improving separation integrity. By developing rapid, high resolution analytical methods, products can be brought to market faster, therefore, improving the overall profitability of the assay.

A new method can be developed efficiently if experimental design is well thought out. Common methods development approaches include: conducting a literature search, trial and error, a step-wise iterative approach or a systematic screening protocol. A systematic screening protocol that explores selectivity factors such as pH, organic modifier, and column chemistry will be the premise of this strategy. This approach allows chromatographers to quickly determine which experimental parameters are most effective in manipulating the selectivity of a separation. By employing this strategy, the total number of steps necessary to develop a method are reduced, therefore, providing an efficient and cost effective approach.

In this application note, combinations of selectivity factors (pH, column chemistry, and organic modifier) in UPLC separations were examined to develop high resolution chromatographic methods. Once the best combination of factors was selected, gradient slope and temperature were optimized. This methods development approach is demonstrated by developing a separation for paroxetine hydrochloride and its related compounds.

WATERS SOLUTIONS

ACQUITY™ UPLC™ System
ACQUITY UPLC™ BEH, BEH Shield,
BEH Phenyl, and HSS T3 Columns

KEYWORDS

Method development, paroxetine hydrochloride and related compounds, pH, column chemistry, organic modifier, optimization, gradient slope, temperature
A Systematic Approach Towards UPLC Methods Development

RESULTS AND DISCUSSION

As depicted in Figure 1, a result matrix of 14 chromatograms is generated by evaluating three Bridged Ethylene Hybrid (BEH) columns at low and high pH and a silica (HSS) column at low pH, with two different organic modifiers. Each experimental result was evaluated for retentivity, peak shape, and resolution.

STEP 1: SELECT THE pH

By first evaluating the data acquired at low and high pH, the retention characteristics, loadability, and overall resolution of the mixture of analytes can quickly be determined. Paroxetine is an alkaline species with a pKa of 9.8. It is, therefore, in its neutral charge state when the mobile phase is increased to pH 10. As seen in Figure 2, acidic mobile phase pH results in poor resolution of paroxetine and related compounds. Alkaline pH provides better retention and resolution of all components due to the neutral charged states of the analytes.

STEP 2: SELECT COLUMN CHEMISTRY

Once pH is selected, a comparison of different stationary phases is made. As shown in Figure 3, all three BEH columns show potential for resolving all components. The ACQUITY UPLC BEH C18 Column was selected to carry out the separation.

EXPERIMENTAL

LC conditions

System: ACQUITY UPLC with ACQUITY UPLC Column Manager and ACQUITY UPLC PDA Detector

Columns: ACQUITY UPLC BEH C18, 1.7 µm, 2.1 × 50 mm (p/n: 186002350)

ACQUITY UPLC BEH Shield RP18, 1.7 µm, 2.1 × 50 mm* (p/n 186002853)

ACQUITY UPLC BEH Phenyl, 1.7 µm, 2.1 × 50 mm (p/n: 186003538)

ACQUITY UPLC HSS T3, 1.8 µm, 2.1 × 50 mm (p/n: 186003538)

Mobile phase: A1 20 mM ammonium formate, pH 3.0

A2 20 mM ammonium bicarbonate, pH 10.0

B1 acetonitrile

B2 methanol

Flow rate: 0.5 mL/min

Gradient: Time Profile %A %B

0.00 95 5

5.00 10 90

5.01 95 5

5.50 95 5

Injection vol.: 4.0 µL

Temperature: 30 ºC

UV detection: 200–350 nm

Sampling rate: 20 pts/sec

Time constant: 0.1

*Not intended for in vitro diagnostic use.

Figure 1. UPLC methods development experimental matrix.
Figure 2. Evaluation of pH selectivity on an ACQUITY UPLC BEH C18 Column.

Figure 3. Comparison of column selectivity in methanol at alkaline pH.
STEP 3: SELECT ORGANIC MODIFIER
Lastly, the organic modifier is selected. Methanol offers a different selectivity than acetonitrile, and is a weaker elution solvent at equivalent concentration. This results in greater retention of the analytes. For this set of components, acetonitrile offers a better separation, as depicted in Figure 4.

OPTIMIZATION
During our initial method screening, the related compounds were spiked into the solution at a 10% concentration level relative to paroxetine for ease of identification. For method optimization, the concentration of the related compounds was reduced from 10% of paroxetine to the target concentration of 0.1%, as shown in Figure 5. However, at the 0.1% concentration level, inadequate resolution among paroxetine and related compounds B and D resulted due to disparate levels of concentration making for a more challenging separation. In efforts to improve the separation, gradient slope and temperature were manipulated.

OPTIMIZATION: GRADIENT SLOPE
Changing gradient slope is often a balance between resolution and sensitivity. Although selectivity change can occur, most often a steeper gradient slope will result in a reduction in resolution and an increase in sensitivity, while a shallower gradient slope will result in an increase in resolution and a decrease in sensitivity.

Figure 4. Evaluation of solvent selectivity on ACQUITY UPLC BEH C18 Column.

Figure 5. Related compounds at 10% vs. 0.1% of paroxetine.
In efforts to improve resolution, the gradient slope was flattened by changing the % organic at the start and then endpoint of the gradient. In this case, marginal improvement was made by altering the gradient slope as depicted in Figure 6. Using the 20–65% acetonitrile gradient, the influence of column temperature was then explored.

OPTIMIZATION: TEMPERATURE

Temperature affects every chemical process that occurs. Analyte diffusivity, sample loadability, and peak shape dramatically improved with increasing temperature. At 60 °C, adequate separation of related compounds from paroxetine was achieved; therefore, no further optimization was necessary.

FINAL CONDITIONS

Separation was performed on an ACQUITY UPLC BEH C$_{18}$, 1.7 µm, 2.1 × 50 mm Column at 60 °C. Mobile phase A contained 20.0 mM ammonium bicarbonate with 1.2% ammonium hydroxide. Mobile phase B was acetonitrile. A 5 minute gradient from 20 to 65% acetonitrile was performed. Flow rate was 0.5 mL/min.

![Figure 6. Monitoring influence of gradient slope reduction.](image1)

![Figure 7. Influence of temperature on separation.](image2)
BUSINESS IMPACT

Productivity improvements associated with employing UPLC Technology for methods development are depicted below in Table 1. By comparing the UPLC methods development strategy outlined previously to one directly scaled to conventional HPLC, a 6-fold improvement in time is observed. This significantly reduces the overall instrument time required to develop chromatographic methods to one work day opposed to one work week with conventional HPLC.

Table 1. Comparison of productivity between UPLC Technology and HPLC for methods development.

<table>
<thead>
<tr>
<th>Methods development time</th>
<th>Conventional HPLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH 3 acetonitrile</td>
<td>pH 3 acetonitrile</td>
</tr>
<tr>
<td>Flow Ramp</td>
<td>Flow Ramp</td>
</tr>
<tr>
<td>5 min</td>
<td>5 min</td>
</tr>
<tr>
<td>Column Conditioning (2 blanks)</td>
<td>Column Conditioning (2 blanks)</td>
</tr>
<tr>
<td>11 min</td>
<td>79.2 min</td>
</tr>
<tr>
<td>Sample Injection (2 replicates)</td>
<td>Sample Injection (2 replicates)</td>
</tr>
<tr>
<td>11 min</td>
<td>79.2 min</td>
</tr>
<tr>
<td>pH 3 methanol</td>
<td>pH 3 methanol</td>
</tr>
<tr>
<td>Flow Ramp</td>
<td>Flow Ramp</td>
</tr>
<tr>
<td>5 min</td>
<td>5 min</td>
</tr>
<tr>
<td>Column Conditioning (2 blanks)</td>
<td>Column Conditioning (2 blanks)</td>
</tr>
<tr>
<td>11 min</td>
<td>79.2 min</td>
</tr>
<tr>
<td>Sample Injection (2 replicates)</td>
<td>Sample Injection (2 replicates)</td>
</tr>
<tr>
<td>11 min</td>
<td>79.2 min</td>
</tr>
<tr>
<td>Column purge</td>
<td>Column purge</td>
</tr>
<tr>
<td>6 min</td>
<td>43.2 min</td>
</tr>
<tr>
<td>pH 3 acetonitrile</td>
<td>pH 3 acetonitrile</td>
</tr>
<tr>
<td>Flow Ramp</td>
<td>Flow Ramp</td>
</tr>
<tr>
<td>5 min</td>
<td>5 min</td>
</tr>
<tr>
<td>Column Conditioning (2 blanks)</td>
<td>Column Conditioning (2 blanks)</td>
</tr>
<tr>
<td>11 min</td>
<td>79.2 min</td>
</tr>
<tr>
<td>Sample Injection (2 replicates)</td>
<td>Sample Injection (2 replicates)</td>
</tr>
<tr>
<td>11 min</td>
<td>79.2 min</td>
</tr>
<tr>
<td>Column purge</td>
<td>Column purge</td>
</tr>
<tr>
<td>6 min</td>
<td>43.2 min</td>
</tr>
<tr>
<td>Time</td>
<td>Time</td>
</tr>
<tr>
<td>120 min</td>
<td>740 min</td>
</tr>
</tbody>
</table>

Screening time

| 3 Hybrid (BEH) Columns | 36.9 Hours |
| 1 Silica (HSS) Column | 6.1 Hours |

Total screening time 43 Hours
CONCLUSIONS

A systematic approach towards chromatographic methods development that monitors selectivity change in a separation by manipulating pH, column chemistry and organic modifier was described. By utilizing UPLC Technology for methods development, a 6-fold improvement in throughput can be realized. This, in turn, reduces cost per sample and time of analysis considerably while maintaining or improving separation integrity. By developing rapid, high resolution analytical methods, products can be brought to market faster, therefore, improving the overall profitability of the assay.