Protein phosphorylation plays an important role in various cellular mechanisms, including signal transduction, cell cycle, and metabolism; therefore, interest in phosphoproteome analysis continues to increase. It is estimated that ~1/3 of all proteins in eukaryotes are phosphorylated. Although shotgun LC-MS/MS is a well-established technique in phosphoproteomics, the analysis of phosphopeptides is hindered by the low concentrations at which these biological compounds are present compared to their unmodified counterparts; as a result of this, there is a need for higher sensitivity and improved selectivity prior to analysis to improve detectability. Here, we report a workflow that uses a 2D RP/RP MS/MS approach for profiling the phosphoproteome of mouse brain from TiO², phosphoprotein samples, followed by nEUI-PLC/MS/MS validation for high-throughput targeted quantitation of phosphopeptides.

METHODS

LC/MS Systems Conditions
- nanoACQUITY UPLC® with 2D Technology SYNAPT™ G2-S HDMS® were used for phosphoprotein profiling.
- 1D nanoACQUITY UPLC®/XEVO™ TQ-SMS were used for targeted MRM quantitation of phosphopeptides.

LC/MS Conditions - Phosphoproteome Profiling
- **Resolution Mode**
 - 8 MS/MS functions
 - 50 ms MS survey scan
 - Resolution 10,000
- **DDA Acquisition**
 - First Dimension: 1D nanoACQUITY UPLC®
 - Mobile phase A: 0.1% formic acid in water
 - Mobile phase B: acetonitrile
 - Source temperature: 70 ºC
 - Cone voltage: 30 V
 - Mass Spectrometry Parameters:
 - Source temperature: 70 ºC
 - Cone voltage: 30 V
 - Mass window: 1.8 uL/min
 - Column: 180 um x 2 cm Symmetry C18 (5 um)
 - Flow rate: 2 uL/min
 - Subgradient: 5 to 45% B in 36 min. 50 min acquisition
- **Second Dimension**
 - Mobile phase A: 20 mM ammonium formate pH 10.0
 - Mobile phase B: acetonitrile
 - Source temperature: 70 ºC
 - Cone voltage: 30 V
 - Mass Spectrometry Parameters:
 - Source temperature: 70 ºC
 - Cone voltage: 30 V
 - Mass window: 1.8 uL/min
 - Column: 180 um x 2 cm Symmetry C18 (1.8 um)
 - Flow rate: 350 nL/min
- **LC/MS Conditions - Targeted MRM Quantitation**
 - Chromatographic Separation:
 - Trappeing column: 100 uL x 2 Symmetry C18 (5 um)
 - Separation column: 75 um x 15 cm I.D. T3 C18 (3.8 um)
 - Mobile phase A: 0.1% formic acid in water
 - Mobile phase B: 100% acetonitrile in water
 - Source temperature: 70 ºC
 - Cone voltage: 30 V
 - Mass Spectrometry Parameters:
 - Source temperature: 70 ºC
 - Cone voltage: 30 V
 - Mass window: 1.8 uL/min
 - Column: 180 um x 2 cm Symmetry C18 (1.8 um)
 - Flow rate: 350 nL/min
 - Subgradient: 4.7 to 9.4% ACN
 - Resolution 10,000
 - Maximum of 200 kDa
 - Nearest adjacent precursor exclusion
 - MRM transitions were predicted from the product ion mass spectrum.

RESULTS

The phosphoproteome of healthy mouse brain was profiled using a hybrid 2D DDA mass spectrometer with enhanced/optimized nanoACQUITY G2-S HDMS. The depth of phosphoproteome coverage was analyzed using peptide phosphosummary scores from enriched phosphopeptides identified with high confidence. The optimal time window was determined to be the 2D RP/RP separation, as well as the optimization of the fast DD parameters.

CONCLUSION

The suitability of this method for profiling the phosphoproteome healthy mouse brain was successfully demonstrated. 795 proteins were identified with a 0.2% false discovery rate at the peptide level, and 152 unique phosphopeptides were quantified with a 2042-fold increase of biological interest in mouse brain to be made.

References

TO DOWNLOAD A COPY OF THIS POSTER, VISIT WWW.WATERS.COM/POSTERS