Analysis of Flocculated Latex Particles using Multi-Detector Hydrodynamic Chromatography

Amandaa K. Brewer
ARKEMA Inc., Analytical and Systems Research, King of Prussia, PA, USA
Latex Particles

Colloids or polymers with a molar mass > 10^6 g/mol.

Particle size and shape play a role in:

- Development of new materials
- Shelf-life of materials
- Control of material processing
- Quality control of colloids
- End-use properties

Latex Particles

- Colloids or polymers with a molar mass $> 10^6$ g/mol.

- Particle size and shape play a role in:
 - Development of new materials
 - Shelf-life of materials
 - Control of material processing
 - Quality control of colloids
 - End-use properties

- Methodology
 - Sieving
 - Sedimentation
 - Microscopy
 - Laser Diffraction

- Limitations
 - Cost, speed, complexity, accuracy, resolution, etc.

Flocculated Latex Particles

System of interests:

• A fluoropolymer/acrylic hybrid latex particle with surfactant package

Properties of interest:

• Particle size/particle size distribution is speculated to effect the end-use properties of the latex such as thickening response.

• Morphology of the fluoropolymer/acrylic hybrid latex particle may influence the end-use properties of the particle.

• Effects of pH and heat aging on the particle size/shape and their distributions (latex flocculation).

• Shelf-life of the fluoropolymer/acrylic hybrid latex particle (time frame for flocculation.)
Hydrodynamic Chromatography

- A solution-based separation method
 - Open tube
 - Packed (Non-porous beads)

- Separation is due to parabolic (Poiseuille) flow profile in an open tube channel.
Hydrodynamic Chromatography

- Analytes are sampled in a size-dependent manner
Hydrodynamic Chromatography

- Analytes are sampled in a size-dependent manner.
- Small particles sample region close to the walls, where the flow is stagnant.
- Large particles remain nearer to center where the flow is faster.
Multi-Detector Hydrodynamic Chromatography

HDC Columns

Multi-Angle Light Scattering (MALS)
Multi-Detector Hydrodynamic Chromatography

HDC Columns

Multi-Angle Light Scattering (MALS)

Quasi-Elastic Light Scattering (QELS)
Multi-Detector Hydrodynamic Chromatography

- HDC Columns
- Quasi-Elastic Light Scattering (QELS)
- Multi-Angle Light Scattering (MALS)
- Differential Refractometry (DRI)
Multi-Detector Hydrodynamic Chromatography

HDC Columns

Multi-Angle Light Scattering (MALS)

Quasi-Elastic Light Scattering (QELS)

Differential Refractometry (DRI)

MALS → R_G

QELS → R_H

DRI + MALS → M
Non-Flocculated Latex Particle

<table>
<thead>
<tr>
<th>Polymer</th>
<th>M_n ($\times 10^9$ g/mol)</th>
<th>M_w ($\times 10^9$ g/mol)</th>
<th>M_z ($\times 10^9$ g/mol)</th>
<th>M_w/M_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Fluoropolymer/Acrylic Particle</td>
<td>1.74 ± 0.20</td>
<td>2.10 ± 0.32</td>
<td>3.03 ± 0.26</td>
<td>1.16 ± 0.1</td>
</tr>
</tbody>
</table>
Non-Flocculated Latex Particle

<table>
<thead>
<tr>
<th>Polymer</th>
<th>$M_n \times 10^9$ g/mol</th>
<th>$M_w \times 10^9$ g/mol</th>
<th>$M_z \times 10^9$ g/mol</th>
<th>M_w/M_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Fluoropolymer/Acrylic Particle</td>
<td>1.74 ± 0.20</td>
<td>2.10 ± 0.32</td>
<td>3.03 ± 0.26</td>
<td>1.16 ± 0.1</td>
</tr>
</tbody>
</table>

![Graph showing retention time vs. 90°SLS(V) and Molar Mass](image-url)
Polymeric Radii

MALS $\rightarrow R_G$
Root mean square distance of an array of atoms from their common center of mass

$$R_G = \left[\left(\frac{1}{n+1} \right) \sum_i (r_i - R_{cm})^2 \right]^{1/2}$$

- $n =$ number of bond in polymer backbone
- $r_i =$ location of an individual atom or group of atoms
- $R_{cm} =$ the location of the center of mass
Non-Flocculated Latex Particle

<table>
<thead>
<tr>
<th>Polymer</th>
<th>$R_{G,n}$ (nm)</th>
<th>$R_{G,w}$ (nm)</th>
<th>$R_{G,z}$ (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Fluoropolymer/Acrylic Particle</td>
<td>82 ± 1</td>
<td>95 ± 1</td>
<td>127 ± 1</td>
</tr>
</tbody>
</table>
Non-Flocculated Latex Particle

<table>
<thead>
<tr>
<th>Polymer</th>
<th>$R_{G,n}$ (nm)</th>
<th>$R_{G,w}$ (nm)</th>
<th>$R_{G,z}$ (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Fluoropolymer/Acrylic Particle</td>
<td>82 ± 1</td>
<td>95 ± 1</td>
<td>127 ± 1</td>
</tr>
</tbody>
</table>

![Graph of retention time vs. radius](image)
Polymeric Radii

MALS → \(R_G \)
Root mean square distance of an array of atoms from their common center of mass

\[
R_G = \left(\frac{1}{n+1} \sum_{i} (r_i - R_{cm})^2 \right)^{1/2}
\]

- \(n \) = number of bond in polymer backbone
- \(r_i \) = location of an individual atom or group of atoms
- \(R_{cm} \) = the location of the center of mass

QELS → \(R_H \)
Radius of an equivalent hard sphere that has the same translational diffusion coefficient \((D_T) \) as a macromolecule.

\[
R_H = \frac{k_B T}{6 \pi \eta_s D_T}
\]

- \(k_B \) = Boltzman's Constant
- \(\eta_s \) = Viscosity of the solvent
- \(D_T \) = Translational Diffusion Coefficient
Non-Flocculated Latex Particle

<table>
<thead>
<tr>
<th>Polymer</th>
<th>(R_{G,n}) (nm)</th>
<th>(R_{G,w}) (nm)</th>
<th>(R_{G,z}) (nm)</th>
<th>(R_{H,n}) (nm)</th>
<th>(R_{H,w}) (nm)</th>
<th>(R_{H,z}) (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Fluoropolymer/Acrylic Particle</td>
<td>82 ± 1</td>
<td>95 ± 1</td>
<td>127 ± 1</td>
<td>22 ± 1</td>
<td>22 ± 1</td>
<td>23 ± 1</td>
</tr>
</tbody>
</table>
Non-Flocculated Latex Particle

<table>
<thead>
<tr>
<th>Polymer</th>
<th>(R_{G,n}) (nm)</th>
<th>(R_{G,w}) (nm)</th>
<th>(R_{G,z}) (nm)</th>
<th>(R_{H,n}) (nm)</th>
<th>(R_{H,w}) (nm)</th>
<th>(R_{H,z}) (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Fluoropolymer/Acrylic Particle</td>
<td>82 ± 1</td>
<td>95 ± 1</td>
<td>127 ± 1</td>
<td>22 ± 1</td>
<td>22 ± 1</td>
<td>23 ± 1</td>
</tr>
</tbody>
</table>

[Graph showing retention time vs. radius for Original Fluoropolymer/Acrylic Particle]
Non-Flocculated Latex Particle

Particle Morphology

MALS/QELS: \(\rho \equiv \frac{R_{G,z}}{R_{H,z}} \)
Non-Flocculated Latex Particle

Particle Morphology

MALS/QELS: $\rho \equiv \frac{R_{G,z}}{R_{H,z}}$

<table>
<thead>
<tr>
<th>ρ</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.36-2.24</td>
<td>Prolate Ellipsoid</td>
</tr>
<tr>
<td>2.0-3.5</td>
<td>Non-overlapping particles</td>
</tr>
</tbody>
</table>
Non-Flocculated Latex Particle

Particle Morphology

MALS/QELS: \(\rho \equiv \frac{R_{G,z}}{R_{H,z}} \)

<table>
<thead>
<tr>
<th>(\rho)</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.36-2.24</td>
<td>Prolate Ellipsoid</td>
</tr>
<tr>
<td>~2.7-4.0</td>
<td>Sample</td>
</tr>
<tr>
<td>2.0-3.5</td>
<td>Non-overlapping particles</td>
</tr>
</tbody>
</table>

![Retention time vs. \(\rho \)](image)
Heat-Aging Latex Particles

\[
\text{Retention time (minutes)}
\]

\[
90^\circ \ \text{SLS (V)}
\]

- Original Particle
Heat-Aging Latex Particles

Retention time (minutes)

90° SLS (V)

- Original Particle
- Original Particle Heat Aged at 40°C
Heat-Aging Latex Particles

Retention time (minutes) vs. 90° SLS (V)

- Original Particle
- Original Particle Heat Aged at 40°C
- Original Particle Heat Aged at 50°C
Heat-Aging Latex Particles

Retention time (minutes)

90° SLS (V)
pH Manipulated Latex Particles

Retention time (minutes)

pH 8
pH Manipulated Latex Particles

Retention time (minutes)
pH Manipulated Latex Particles

<table>
<thead>
<tr>
<th>Polymer</th>
<th>$R_{G,n}$ (nm)</th>
<th>$R_{G,w}$ (nm)</th>
<th>$R_{G,z}$ (nm)</th>
<th>$R_{H,n}$ (nm)</th>
<th>$R_{H,w}$ (nm)</th>
<th>$R_{H,z}$ (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH 8</td>
<td>84 ± 1</td>
<td>96 ± 1</td>
<td>128 ± 1</td>
<td>25 ± 1</td>
<td>26 ± 1</td>
<td>29 ± 1</td>
</tr>
<tr>
<td>pH 7.5</td>
<td>88 ± 1</td>
<td>109 ± 1</td>
<td>170 ± 1</td>
<td>26 ± 1</td>
<td>27 ± 1</td>
<td>30 ± 1</td>
</tr>
<tr>
<td>pH 7</td>
<td>71 ± 1</td>
<td>71 ± 1</td>
<td>76 ± 1</td>
<td>25 ± 1</td>
<td>25 ± 1</td>
<td>26 ± 1</td>
</tr>
</tbody>
</table>

![Graph showing retention time vs. (v)SLS 0.06 for pH 8, pH 7.5, and pH 7.](image-url)
pH Manipulated Latex Particles

<table>
<thead>
<tr>
<th>Polymer</th>
<th>R_G,n (nm)</th>
<th>R_G,w (nm)</th>
<th>R_G,z (nm)</th>
<th>R_H,n (nm)</th>
<th>R_H,w (nm)</th>
<th>R_H,z (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH 8</td>
<td>84 ± 1</td>
<td>96 ± 1</td>
<td>128 ± 1</td>
<td>25 ± 1</td>
<td>26 ± 1</td>
<td>29 ± 1</td>
</tr>
<tr>
<td>pH 7.5</td>
<td>88 ± 1</td>
<td>109 ± 1</td>
<td>170 ± 1</td>
<td>26 ± 1</td>
<td>27 ± 1</td>
<td>30 ± 1</td>
</tr>
<tr>
<td>pH 7</td>
<td>71 ± 1</td>
<td>71 ± 1</td>
<td>76 ± 1</td>
<td>25 ± 1</td>
<td>25 ± 1</td>
<td>26 ± 1</td>
</tr>
</tbody>
</table>

The graph shows the retention time (minutes) vs. the absorbance (A) at 506 nm for different pH conditions: pH 8, pH 7.5, and pH 7.
AFM and HDC both show that the particles at pH=7 are more monodisperse and uniform than those at the other pHs.

pH appears to play a role in particle flocculation of the fluoropolymer/acrylic hybrid particle.
Time Aged Latex Particles

Retention time (minutes)
Time Aged Latex Particles

Retention time (minutes)

<table>
<thead>
<tr>
<th>Time (months)</th>
<th>Latex Particles</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Original Particle</td>
</tr>
<tr>
<td>2</td>
<td>2 month old original particle</td>
</tr>
</tbody>
</table>

g_{0^0}SLS (V) vs Retention time (minutes)
Time Aged Latex Particles

Retention time (minutes)

Flocculation
Size

90° SLS (V)

Retention time (minutes)
A decrease in viscosity was observed by rheology as the fluoropolymer/acrylic latex particle ages, indicating an increase in flocculation.

Both HDC and rheology show an increase in flocculated particles as the fluoropolymer/acrylic particle ages.
Multi-detector hydrodynamic chromatography (HDC) was successfully used to analyze the particle size, shape, and their distributions of a fluoropolymer/ acrylic hybrid latex particle.

HDC provided a tool for monitoring the flocculation of a fluoropolymer/ acrylic hybrid latex particle as a function of pH, heat aging and time aging.

HDC results were consistent with those observed by microscopy (particle size/ shape as a function of pH) and rheology (increase of flocculation with latex age.)
Acknowledgements

- Sara Reynaud (Arkema Inc. Rheology)
- Gunter Moeller (Arkema Inc. Microscopy)

Disclaimer

The statements, technical information and recommendations contained herein are believed to be accurate as of the date hereof. Since the conditions and methods of use of the information referred to herein are beyond our control, Arkema expressly disclaims any and all liability as to any results obtained or arising from any reliance on such information; NO WARRANTY OF FITNESS FOR ANY PARTICULAR PURPOSE, WARRANTY OF MERCHANTABILITY, OR ANY OTHER WARRANTY, EXPRESS OR IMPLIED, IS MADE CONCERNING THE INFORMATION PROVIDED HEREIN. The user should thoroughly test any application before commercialization. Nothing contained herein constitutes a license to practice under any patent and it should not be construed as an inducement to infringe any patent, and the user is advised to take appropriate steps to be sure that any proposed action will not result in patent infringement.

© 2015 Arkema Inc.
Heat-Aging Latex Particles

<table>
<thead>
<tr>
<th>Polymer</th>
<th>$M_n (\times 10^9 \text{ g/mol})$</th>
<th>$M_w (\times 10^9 \text{ g/mol})$</th>
<th>$M_z (\times 10^9 \text{ g/mol})$</th>
<th>M_w/M_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Fluoropolymer/Acrylic Particle</td>
<td>1.74 ± 0.20</td>
<td>2.10 ± 0.32</td>
<td>3.03 ± 0.26</td>
<td>1.16 ± 0.1</td>
</tr>
<tr>
<td>Heat Aged at 40°C</td>
<td>1.59 ± 0.25</td>
<td>1.90 ± 0.21</td>
<td>3.33 ± 0.20</td>
<td>1.19 ± 0.1</td>
</tr>
<tr>
<td>Heat Aged at 50°C</td>
<td>1.51 ± 0.20</td>
<td>1.79 ± 0.20</td>
<td>4.68 ± 0.10</td>
<td>1.18 ± 0.1</td>
</tr>
</tbody>
</table>
Heat-Aging Latex Particles

<table>
<thead>
<tr>
<th>Polymer</th>
<th>$M_n \times 10^9$ g/mol</th>
<th>$M_w \times 10^9$ g/mol</th>
<th>$M_z \times 10^9$ g/mol</th>
<th>M_w/M_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Fluoropolymer/Acrylic Particle</td>
<td>1.74 ± 0.20</td>
<td>2.10 ± 0.32</td>
<td>3.03 ± 0.26</td>
<td>1.16 ± 0.1</td>
</tr>
<tr>
<td>Heat Aged at 40°C</td>
<td>1.59 ± 0.25</td>
<td>1.90 ± 0.21</td>
<td>3.33 ± 0.20</td>
<td>1.19 ± 0.1</td>
</tr>
<tr>
<td>Heat Aged at 50°C</td>
<td>1.51 ± 0.20</td>
<td>1.79 ± 0.20</td>
<td>4.68 ± 0.10</td>
<td>1.18 ± 0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Polymer</th>
<th>$R_{G,n}$ (nm)</th>
<th>$R_{G,w}$ (nm)</th>
<th>$R_{G,z}$ (nm)</th>
<th>$R_{H,n}$ (nm)</th>
<th>$R_{H,w}$ (nm)</th>
<th>$R_{H,z}$ (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Fluoropolymer/Acrylic Particle</td>
<td>82 ± 1</td>
<td>95 ± 1</td>
<td>127 ± 1</td>
<td>22 ± 1</td>
<td>22 ± 1</td>
<td>23 ± 1</td>
</tr>
<tr>
<td>Heat Aged at 40°C</td>
<td>79 ± 1</td>
<td>92 ± 1</td>
<td>123 ± 1</td>
<td>27 ± 1</td>
<td>27 ± 1</td>
<td>31 ± 1</td>
</tr>
<tr>
<td>Heat Aged at 50°C</td>
<td>78 ± 1</td>
<td>89 ± 1</td>
<td>130 ± 1</td>
<td>26 ± 1</td>
<td>27 ± 1</td>
<td>27 ± 1</td>
</tr>
</tbody>
</table>