
Waters™

アプリケーションノート

Development of a High Sensitivity, Sub-Picogram SPE LC-MS Method for Quantification of Mometasone from Human Plasma

Taposh Gorella, Rajesh PMN, Dr. Padmakar Wagh

日本ウォーターズ株式会社

Abstract

This application highlights the development of a highly sensitive and robust LC-MS assay for the quantification of mometasone furoate extracted from plasma. The method described herein achieves an LLOQ of 0.5 pg/mL with a linear dynamic range of 0.5–60 pg/mL. This developed method has demonstrated its fit-for-purpose use in support of drug discovery and research.

Benefits

- Use of UPLC columns for excellent resolution for mometasone furoate from endogenous interferences
- Fast, simple, and selective sample preparation using Oasis HLB Cartridges
- Linear, accurate, and precise quantitative performance
- High analytical sensitivity detection, achieving 0.5 pg/mL, using the Xevo TQ-XS equipped with UniSpray ion source

Introduction

Mometasone furoate (Figure 1) 1 is a synthetic corticosteroid with the chemical name 9, 21-dichloro-11(Beta),17-dihydroxy-16(alpha)-methylpregna1,4-diene-3,20-dione 17-(2-furoate). It is a potent beta 2-agonist with anti-inflammatory activity, used in the treatment of asthma and/or chronic obstructive pulmonary disease. 2

Figure 1. Mometasone furoate chemical structure.

With minimal bioavailability (<1 %) and very low circulating plasma concentrations (50 pg/mL) following a

 $100-400~\mu g$ inhaled dose, accurate quantification of mometasone from plasma can be challenging. In this work, a robust, sensitive, and selective method was developed for the accurate quantification of mometasone furoate. This method uses UPLC separation, tandem quadrupole MS with UniSpray ionization, and selective solid-phase extraction (SPE) sample preparation, achieving a lower limit of quantitation (LLOQ) of 0.5 pg/mL from 600 μ L of plasma.

Experimental

Sample preparation

Standards and quality control (QC) samples were prepared by spiking mometasone furoate (0.5 to 60 pg/mL) into commercially available human plasma. Calibration curve standards were prepared in duplicate to check the reproducibility, while five replicates were prepared for the QC's. 25 μ L of mometasone furoate-d3 (5 ng/mL), which was used as internal standard (ISTD), was added to the plasma samples spiked with mometasone furoate (600 μ L). Following internal standard addition, sample was treated with 200 μ L methanol and mixed. The pretreated plasma sample was then extracted using the Waters Oasis HLB 1 cc Cartridges and the extraction protocol shown in Figure 2. Following extraction, samples were injected for LC-MS/MS analysis.

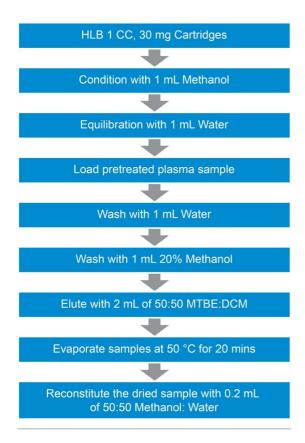


Figure 2. SPE extraction protocol for mometasone fuorate from human plasma using Oasis HLB 1 cc Cartridges.

LC-MS conditions

LC system:	ACQUITY UPLC I-Class
Column:	ACQUITY BEH Phenyl 130Å, 1.7 μ m, 2.1 mm $ imes$ 100 mm
Column temp.:	50 °C
Sample temp.:	10 °C
Injection volume:	10 μL
Mobile phase A:	0.1% Formic acid in 5 mm ammonium formate in water

Mobile phase B: Methanol

Reconstitution solution: 50:50 Methanol:water

Gradient Table

Time (min)	Flow (mL/min)	Mobile phase A	Mobile phase B	Curve
0.0	0.4	95	5	6
0.5	0.4	95	5	6
6.0	0.4	10	90	6
7.0	0.4	10	90	6
7.1	0.4	95	99	6
8.0	0.4	95	10	6

Table 1. LC gradient for mometasone furoate analysis.

MS conditions

Mass spectrometer: Xevo TQ-XS Tandem

Quadrupole

Ionization: ESI+ with UniSpray ion source

Capillary voltage: 0.5 KV (+)

Desolvation temp.: 650 °C

Cone gas flow: 150 L/h

Desolvation gas flow: 1000 L/h

Collision cell pressure: $3.8 \times e^{-3}$ mbar

Data management

Chromatography software: MassLynx

Results and Discussion

In this work, we have developed a complete sample preparation and UPLC LC-MS/MS method for sensitive and accurate quantification of mometasone furoate from plasma. SPE extraction of mometasone furoate from plasma was achieved using Oasis HLB 1 cc Cartridges using the SPE extraction procedure shown in Figure 2. Oasis HLB is a polymeric reversed-phased sorbent that provides high capacity and added specificity to this method. Recovery for mometasone furoate using this SPE extraction method was ~85%. LC-MS/MS quantification was performed using a Waters Xevo TQ-XS tandem/triple quadrupole mass spectrometer, coupled to an ACQUITY UPLC I-Class System. Chromatographic separation was achieved with an ACQUITY UPLC BEH Phenyl 1.7 μ m Column, at a flow rate of 0.4 mL/min using a linear gradient (Table 1) with 5 mm ammonium formate in water containing 0.1% formic acid and methanol mobile phases. MRM transitions used for quantification are summarized in Table 2.

Analyte	Precursor ion (m/z)	Product ion (m/z)	Cone voltage	Collision energy (eV)
Mometasone furoate	521.16	355.05	37	13
Mometasone furoate-d3 (ISTD)	524.08	355.05	37	13

Table 2. MRM transitions for mometasone and mometasone furoate-d3 (ISTD).

The Xevo TQ-XS Mass Spectrometer, equipped with a step-wave ion guide and UniSpray ion source, enabled improved ion sampling in the source, better ion transfer efficiency, and improved ionization. Use of a low dispersion UPLC I-Class System and sub-2-µm UPLC column, coupled to the Xevo TQ-XS, afforded excellent resolution from endogenous matrix components, enhancing selectivity, and sensitivity. This sensitivity and selectivity is illustrated in Figure 3 for the LLOQ, 0.5 pg/mL extracted plasma sample, achieving a signal-to-noise (S/N) ratio of 19.7.

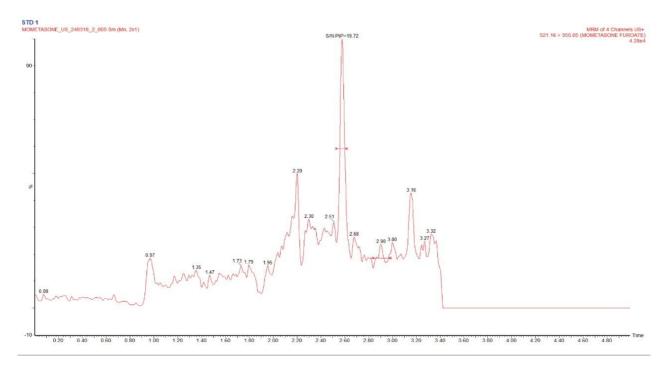


Figure 3. Representative mometasone furoate LLOQ (0.5 pg/mL) chromatogram, extracted from plasma, demonstrating excellent sensitivity and selectivity

Using this SPE LC-MS method, quantitative performance was excellent. Calibration curves were linear (r² >0.9959) from 0.5–60 pg/mL with accuracies between 85–115% and CVs <15% for all points on the curve. Figure 4 illustrates this performance. At the same time, QC statistics easily met recommended bioanalytical method development guidelines,⁴ with average precision and accuracy values <15%. This QC performance is highlighted in Table 3 for precision and accuracy (PA) batches, while chromatographic performance is illustrated in Figure 5.

Compound name: MOMETASONE FUROATE Correlation coefficient: r = 0.997964, $r^2 = 0.995932$ Calibration curve: 0.105244*x + 0.0137033 Response type: Internal Std (Ref 2), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: $1/x^2$, Axis trans: None

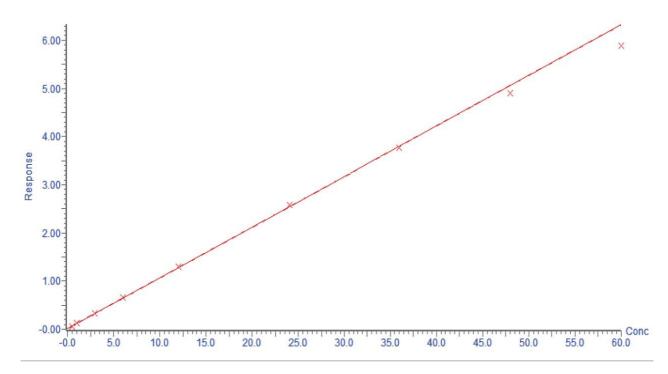


Figure 4. Representative mometasone furoate calibration curve (0.5 to 60 pg/mL) extracted from plasma.

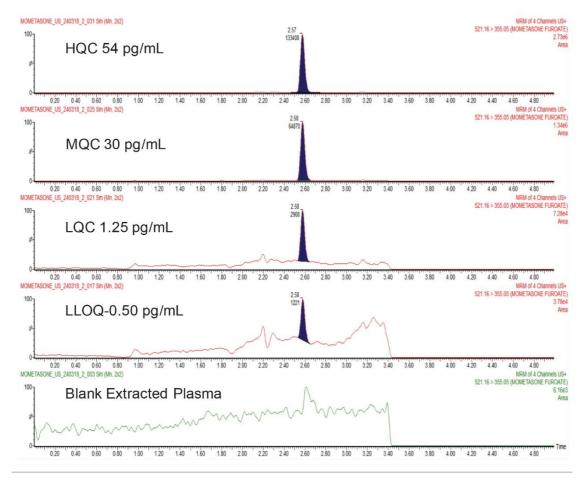


Figure 5. Representative QC's chromatograms for mometasone furoate extract from plasma, highlighting sensitivity and specificity.

	Sample #	LQC (1.25 pg/mL)	MQC (30 pg/mL)	HQC (54 pg/mL)
Batch 1	1	1.26	29.82	51.26
	2	1.31	30.06	50.92
	3	1.31	29.62	50.71
	4	1.62	31.16	51.03
	5	1.23	30.21	50.46
	Mean conc. (pg/mL)	1.35	30.17	50.88
	STD	0.157	0.596	0.306
	% CV	11.66	1.97	0.60
	Mean % accuracy	107.68	100.58	94.21
	6	1.25	29.08	48.99
	7	1.34	28.74	48.77
	8	1.23	29.25	44.48
	9	1.56	29.52	50.17
Batch 2	10	1.15	29.83	48.82
	Mean conc. (pg/mL)	1.31	29.28	48.25
	Std	0.157	0.416	2.182
	% CV	12.04	1.42	4.52
	Mean % accuracy	104.48	97.61	89.34

Table 3. Summary of quality control results for mometasone furoate extracted from human plasma for PA batches 1 and 2.

Conclusion

This application highlights the development of a highly sensitive and robust LC-MS assay for the quantification of mometasone furoate extracted from plasma. The method described herein achieves an LLOQ of 0.5 pg/mL with a linear dynamic range of 0.5–60 pg/mL. The high sensitivity and linearity of method was attributed to extraction specificity of Oasis MCX solid phase extraction sample preparation, high resolution UPLC chromatographic separation with the ACQUITY UPLC I-Class System using a sub-2- μ m UPLC column, and sensitivity of the Xevo TQ-XS Mass Spectrometer with UniSpray Technology. This developed method has demonstrated its fit-for-purpose use in support of drug discovery and research.

References

1. O' Neil MJ (2006) The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals. (14th edn), Merck

& Co. Inc, 4244.

- 2. Sweetman SC (2007) *Martindale the Complete Drug Reference*. (35th edn), Pharmaceutical press, London, 925.
- 3. Daley Yates, PT (2015) Inhaled Corticosteroids: Potency, Dose Equivalence and Therapeutic Index. *Br J Clin Pharmacol*, 80: 372–380. doi: 10.1111/bcp.12637.
- 4. Validated Method Development for Estimation of Formoterol Fumarate and Mometasone Furoate in Metered Dose Inhalation Form by High Performance Liquid Chromatography. Srinivasarao, Katari 1,2*; Gorule, Vinayk3; Reddiah, Venkata Ch3, and Krishna, Venkata A3.

Featured Products

ACQUITY UPLC I-Class PLUS System https://www.waters.com/134613317

Xevo TQ-XS Triple Quadrupole Mass Spectrometry https://www.waters.com/134889751

MassLynx MS Software https://www.waters.com/513662

TargetLynx https://www.waters.com/513791

720006399, September 2018

©2019 Waters Corporation. All Rights Reserved.