Waters™

Nota applicativa

Rapid Separation of Vitamin K_1 Isomers and Vitamin K_2 in Dietary Supplements Using UltraPerformance Convergence Chromatography with a C_{18} Column

Jinchuan Yang

Waters Corporation

Abstract

In this application note presents the use of UltraPerformance Convergence Chromatography for a fast separation of vitamin K_1 trans and cis isomers and menatetrenone (MK-4), a common form of vitamin K_2 , on an ACQUITY UPC² HSS C_{18} SB Column.

Benefits

- Fast and reliable separation of vitamin K₁ trans and cis isomers and MK-4 in less than three minutes.
- · Separation is achieved on a C₁₈ column; no special C₃₀ column is needed.
- The use of carbon dioxide as the primary mobile phase minimizes organic solvent waste.

Introduction

Vitamin K_1 (phylloquinone) is an essential human nutrient produced in plants, especially green leafy vegetables. The vitamin K_1 in natural products exists mainly as the *trans* form, while the vitamin K_1 used in food supplementation is often synthetic K_1 , which may contain appreciable amounts of the *cis* form. The *trans*-vitamin K_1 is bioactive, while the *cis*- K_1 is not. It is highly desirable to separate the *trans*- and the *cis*-vitamin K_1 isomers to truly evaluate the nutritional value of the supplement ingredient. Available HPLC methods for the separation of vitamin K_1 isomers require C_{30} columns. Their typical run time is about 20 minutes, and chlorinated solvents are used in some of the methods.¹⁻³

UltraPerformance Convergence Chromatography (UPC 2) is a separation technique that leverages the unique properties (i.e., low viscosity and high diffusivity) of compressed CO_2 at or near its supercritical state, as well as sub-2 micron particle packed columns to significantly improve the separation efficiency, speed, and selectivity.⁴ This application note demonstrates a fast separation of vitamin K_1 *trans* and *cis* isomers and menatetrenone (MK-4), a common form of vitamin K_2 , by UPC 2 in less than three minutes on an ACQUITY UPC 2 HSS C_{18} SB Column. Figure 1 shows the structures of vitamin K_1 isomers and MK-4. Comparing to current LC-based vitamin K_1 *trans* and *cis* isomers analysis methods, this UPC 2 method is faster, simpler (no need to use a C_{30} column), and it uses less organic solvent.

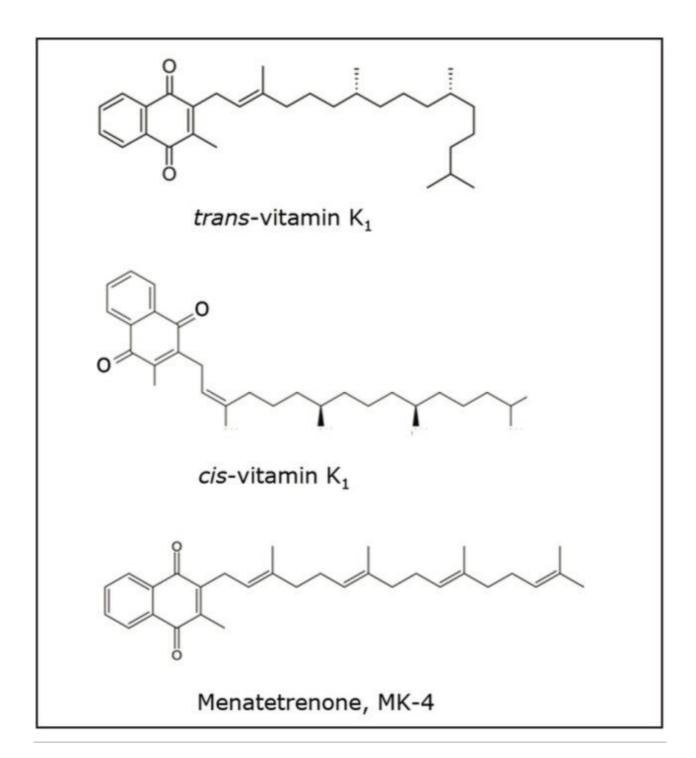


Figure 1. Structures of trans- and cis-vitamin K_1 and menatetrenone.

Sample preparation

Sample preparation Vitamin K_1 (Sigma-Aldrich) and MK-4 (Sigma-Aldrich) were weighed and dissolved in iso-octane (ReagentPlus, Sigma-Aldrich) to obtain a stock solution at 1 mg/mL. Intermediate and working standard solutions were obtained by serial dilution of the stock solution with iso-octane. Vitamin K_1 supplement tablets were purchased from a local store and were ground into a powder and extracted with iso-octane. The supernatant was filtered with a 0.45- μ m PTFE syringe filter and diluted before injection.

Conditions

UPC₂ conditions

System ACQUITY UPC² with ACQUITY UPC² PDA

Detector

Software Empower 3

Detection UV at 243 nm (compensation reference 400 to

500 nm, res. 6 nm)

Column ACQUITY UPC 2 HSS C $_{18}$ SB 3.0 x 100 mm, 1.8 μ m

Column temp. 50 °C

Sample temp. 10 °C

Injection volume 20 μ L (Full loop)

Flow rate 3.00 mL/min

Mobile phase A Compressed CO₂

Mobile phase B Acetonitrile/methanol mixture (50/50 v/v)

Run time 4 min

UPC₂ conditions

ABPR pressure 1500 psi

Gradient 0.5% B for 2 min, ramp to 20% B in 1.5 min, hold

at 20% B for 0.5 min

Results and Discussion

Vitamin K_1 *cis* and *trans* isomers and MK-4 were baseline separated in less than three minutes by UPC² using a single UPC² HSS C₁₈ SB Column (3.0 x 100 mm, 1.8 μ m). The *cis* form eluted first, followed by the *trans* form, then the MK-4, as shown in Figure 2. The USP resolution between the critical pair, the *cis*- and the *trans*-K₁, was 1.7 (Table 1). In the gradient program, the initial two-minute isocratic elution at 0.5% B was necessary for the baseline separation of the *cis*- and the *trans*-vitamin K₁. Precise control of the mobile phase B delivery volume at 0.5% is critical for the critical pair separation. The ACQUITY UPC² System is the only SFC system on the market that can provide this level of precision control. Following the isocratic hold, a generic gradient from 0.5% to 20% B was used in the study. This gradient range could be modified in applications depending on the retention of the actual vitamin K₂ homologues of interest. MK-4 was included in this study because it is a common form of vitamin K₂, and it is structurally the closest vitamin K₂ to K₁. Other forms of vitamin K₂, such as MK-7, have longer side chains, and tend to be retained longer at column. They can therefore be easily separated from vitamin K₁. The total run time was four minutes, which was at least five times faster than the typical run time for HPLC methods using C₃₀ columns. The organic solvent consumption was less than 1 mL per injection, which is only a fraction of the typical 15 to 30 mL of solvent used in LC methods.

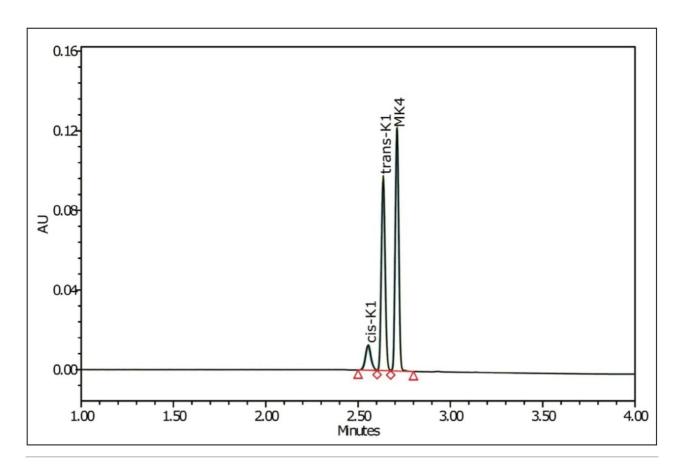


Figure 2. Chromatogram overlay of vitamin K_1 isomers and MK-4 standard mixture (n=10).

RT		Peak area		Resolution
(min)	RTRSD	RSD	Resolution	RSD
2.553	0.08%	0.6%	-	-
2.636	0.05%	0.2%	1.7	1.1%
2.710	0.05%	0.2%	2.0	0.9%
	(min) 2.553 2.636	(min) RTRSD 2.553 0.08% 2.636 0.05%	(min) RTRSD RSD 2.553 0.08% 0.6% 2.636 0.05% 0.2%	(min) RTRSD RSD Resolution 2.553 0.08% 0.6% - 2.636 0.05% 0.2% 1.7

Table 1. Results of replicate analysis of vitamin K standard mixture (n=10).

Ten replicate analyses of a standard mixture demonstrated excellent repeatability (Table 1). The limits of quantitation (LOQ), estimated at a signal-to-noise ratio at 10, were 0.06, 0.06, and 0.04 μ g/mL for the *cis*-vitamin K₁, the *trans*-vitamin K₁ and the MK-4, respectively (Table 2). Excellent linearity (R²>0.998) was obtained for these compounds (Table 2). Analysis of a commercial vitamin K supplement product also showed excellent repeatability and resolution (Figure 3). In this product, the *cis*-K₁ was found to account for 11.2% of the total vitamin K₁ (Table 3).

Parameters	cis -vitamin K_1	$trans$ -vitamin K_1	MK-4
Range (µg/mL)	0.03 to 1.5	0.02 to 8.5	0.02 to 10
Regression (R ²)	0.9980	0.9997	0.9999
Slopes (mV sec mL/μg)	17.7	16.3	16.0
LOQ (µg/mL)	0.06	0.06	0.04

Table 2. LOQ and linearity.

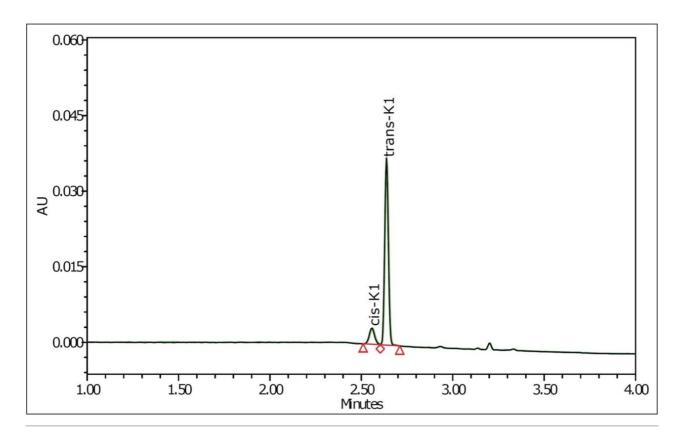


Figure 3. Chromatogram overlay of replicate analysis of vitamin K tablet (n=3).

	RT		Conc.		
	Mean	RSD	Mean	RSD	% of total K ₁
	(Min)	(%)	(µg/mL)	(%)	Conc.
cis-vitamin K ₁	2.558	0.09	0.38	2.1	11.2
trans-vitamin K ₁	2.638	0.06	3.20	0.3	88.8

Table 3. Results of replicate analysis of vitamin K supplement tablet (n=3).

Conclusion

UPC² Technology enables a rapid separation of the cis- and the trans-vitamin K_1 isomers and MK-4 on an ACQUITY UPC² HSS C_{18} SB Column in less than three minutes. The analysis time is at least five times faster than the current available HPLC methods, and no special C_{30} column is needed. This UPC² method has excellent separation selectivity, resolution, sensitivity, repeatability, and it uses much less solvent than HPLC methods. UPC² can potentially be used by food ingredient testing labs for routine vitamin K analysis with significant increases in throughput and decreases in operating cost.

References

- AOAC Official Method 999.15 Vitamin K in milk and infant formulas liquid chromatographic method.
 AOAC International. 2005.
- 2. Woollard DC, Indyk HE, Fong BY, Cook KK. Determination of vitamin K₁ isomers in foods by liquid chromatography with C₃₀ bonded-phase column. *J AOAC International* 85(3):682-691. 2002
- 3. Huang B, Zheng F, Fu S, Yao J, Tao B, Ren Y. UPLC-ESI-MS/MS for determining *trans* and *cis*-vitamin K₁ in infant formulas: method and applications. *Eur Food Res Technol*.;235(5):873-879. Nov. 2012.
- 4. Aubin A. Analysis of fat-soluble vitamin capsules using UltraPerformance Convergence Chromatography. Waters Application Note No. 720004394en. June, 2012.

Featured Products

ACQUITY UPC2 System https://www.waters.com/134658367

ACQUITY UPLC PDA Detector https://www.waters.com/514225

Empower 3 Chromatography Data Software https://www.waters.com/513188

Available for purchase online

Viridis HSS C18 SB Column, 100Å, 1.8 μ m, 3 mm X 100 mm, 1/pkg < https://www.waters.com/waters/partDetail.htm?partNumber=186006623>

720004937, February 2014

©2019 Waters Corporation. All Rights Reserved.