Waters™

應用手冊

Gradient Chemical Stability Study on XBridge HILIC

Waters Corporation

This is an Application Brief and does not contain a detailed Experimental section.

Abstract

This application brief demonstrates the gradient chemical stability study on XBridge HILIC column.

Introduction

The compounds used in this study are-

- 1. Uracil
- 2. 5-Fluorocytosine
- 3. Cytosine

 NH_2

Cytosine m.w. 111.1

Figure 1. Structures of the compounds used in this study.

Experimental

Test Conditions

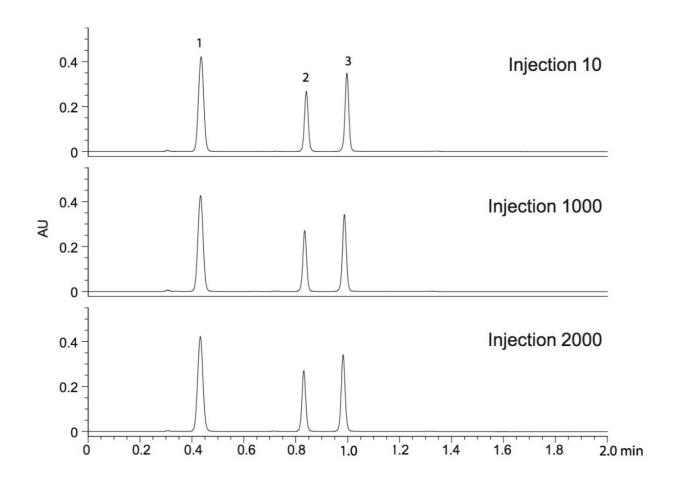
Column: XBridge HILIC, 2.1 x 50 mm, 3.5 µ Part Number: 186004432 Mobile Phase A: 95:5 acetonitrile:water with 10 m $NH_4 + CH_3COO- pH 5.5$ Mobile Phase B: 50:50 acetonitrile:water with 10 r $NH_4 + CH_3COO - pH 5.5$ Flow Rate: 0.5 mL/min Injection Volume: 2.0 μL (full loop) Weak Needle Wash: 95:5 acetonitrile:water Sample Diluent: 75:25 acetonitrile:methanol Temperature: 30 °C Detection: UV @ 254 nm Sampling Rate: 40 pts/sec

Instrument: Waters ACQUITY UPLC with TU

detector

0.05

Gradient:


Time Constant:

Time(min) Profile Curve

%A %B

0	99	1	6
2.0	1	99	6
2.1	99	1	6
2.5	99	1	6

Results and Discussion

Featured Products

· ACQUITY UPLC System https://www.waters.com/514207
ACQUITY UPLC PDA Detector https://www.waters.com/514225
WA64080, August 2009
^
©2019 Waters Corporation. All Rights Reserved.