
## Waters™

# LC-MS Isocratic Separation of Neurotransmitters on XBridge HILIC

Waters Corporation



This is an Application Brief and does not contain a detailed Experimental section.

**Abstract** 

This application brief demonstrates the LC-MS isocratic separation of neurotransmitters on XBridge HILIC Column.

#### Introduction

The compounds used in this study are:

- 1. Acetylcholine (Ach)
- 2. Choline (Ch)

$$H_3C$$
 $CH_3$ 
 $CH_3$ 

Acetylcholine (Ach)

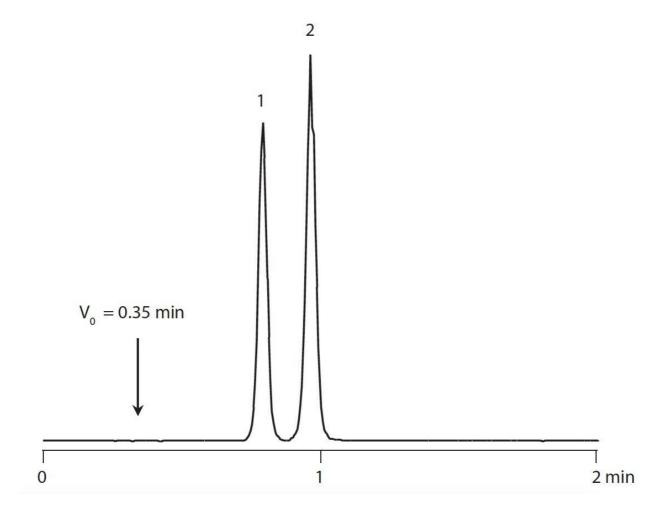
$$H_3C$$
 $OH$ 
 $CH_3$ 

Choline (Ch)

#### Experimental

#### LC Conditions

Column: XBridge HILIC, 2.1 x 50 mm, 3.5  $\mu$ m


Part number: 186004432

Mobile phase A: 10 mM NH<sub>4</sub>COOH with 0.125% HCOOH in H<sub>2</sub>O

| Mobile phase B:                     | 10 mM NH <sub>4</sub> COOH with 0.125% HCOOH in 90:5:5 $\label{eq:ACN:MeOH:H2O} ACN: MeOH: H_2O$ |
|-------------------------------------|--------------------------------------------------------------------------------------------------|
| Isocratic mobile phase composition: | 10% A; 90% B                                                                                     |
| Flow rate:                          | 0.5 mL/min                                                                                       |
| Injection volume:                   | 10.0 μL (full loop)                                                                              |
| Sample diluent:                     | 75:25 ACN:MeOH with 0.2% HCOOH                                                                   |
| Sample concentration:               | 5 ng/mL each                                                                                     |
| Column temperature:                 | 30 °C                                                                                            |
| Weak and strong needle wash:        | 95:5 ACN:H <sub>2</sub> O                                                                        |
| Detection:                          | MS                                                                                               |
| Sampling rate:                      | 5 points/sec                                                                                     |
| Instrument:                         | Waters ACQUITY UPLC with TQD                                                                     |
| MS Conditions                       |                                                                                                  |
| Ionization mode:                    | ES+                                                                                              |
| Capillary:                          | 0.5 kV                                                                                           |
| Cone:                               | 40 V (choline), 25 V (acetylcholine)                                                             |
| Source temperature:                 | 120 °C                                                                                           |
| Desolvation temperature:            | 350 °C                                                                                           |
|                                     |                                                                                                  |

| Desolvation gas flow: | 800 L/Hr                                              |
|-----------------------|-------------------------------------------------------|
| SIR:                  | 146.1 <i>m/z</i> (acetylcholine); 104.0 m/z (choline) |
| Dwell time:           | 150 msec                                              |
| ISD:                  | 10 msec                                               |
| ICD:                  | 10 msec                                               |
|                       |                                                       |

#### Results and Discussion



### Featured Products

ACQUITY UPLC System <a href="https://www.waters.com/514207">https://www.waters.com/514207</a>

WA64076, August 2009

© 2021 Waters Corporation. All Rights Reserved.