

Gradient Separation of Morphine and Metabolites on Atlantis HILIC Silica

Waters Corporation

This is an Application Brief and does not contain a detailed Experimental section.

Abstract

This application brief demonstrates the gradient separation of morphine and its metabolites on Atlantis HILIC Silica column.

Introduction

The compounds used in this study are-

- 1. 6-Acetylmorphine
- 2. Morphine
- 3. Morphine-3 β -D-glucuronide

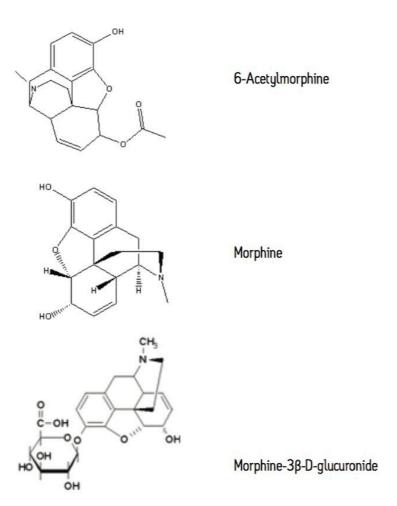


Figure 1. Structures of the compounds used in this study.

Experimental

Test Conditions

Column: Atlantis HILIC Silica, 2.1 x 50 mm, 3 μ m Part Number: 186002011
Mobile Phase A: 10 mM NH₄COOH in H₂O, 0.125% HCOOH in 50:50 ACN:H₂O

Mobile Phase B: $10 \text{ mM NH}_4\text{COOH in H}_2\text{O}, 0.125\% \text{ HCOOH in }90:10$

ACN:H₂O

Flow Rate: 0.6 mL/min

Injection Volume: $5 \mu L$

Sample Concentration: $25 \mu g/mL$ each

Sample Diluent: 75:25 ACN:MeOH with 0.2% HCOOH

Column Temperature: 30 °C

Detection: UV @ 280 nm

Sampling Rate: 20 points/sec

Time Constant: 0.1

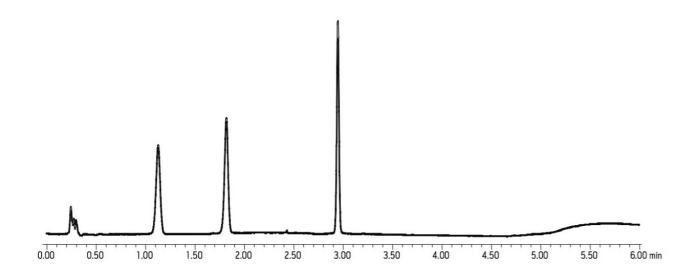
%A

Instrument: Waters ACQUITY UPLC with ACQUITY PDA

Gradient:

Time(min) Profile

0.00 0.1


1.05 0.1

4.35 99.9

4.50 0.1

Time(min) Profile
6.00 0.1

Results and Discussion

Featured Products

- ACQUITY UPLC System https://www.waters.com/514207
- ACQUITY UPLC PDA Detector https://www.waters.com/514225

WA64070, August 2009

©2019 Waters Corporation. All Righ	nts Reserved.	