# Waters™

### Application Note

# Analysis of Cellulosic Hydrolysates Using ACQUITY UPLC BEH Amide Columns

| Waters | Corno | ration |
|--------|-------|--------|
|        |       |        |

This is an Application Brief and does not contain a detailed Experimental section.

#### Abstract

This application brief highlights the analysis of cellulosic hydrolysates using ACQUITY UPLC BEH Amide Columns.

#### Introduction

The compounds analysed in this study are:

- 1. Xylose
- 2. Fructose
- 3. Mannose
- 4. Glucose

- 5. Sucrose
- 6. Cellobiose
- 7. Melezitose
- 8. Raffinose
- 9. Maltotriose
- 10. Maltotetraose
- 11. Maltopentaose
- 12. Maltohexaose
- 13. Maltoheptaose

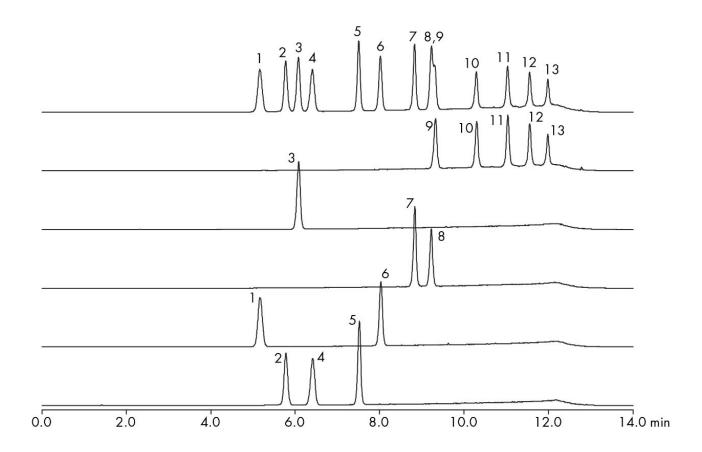
## Experimental

### **Chromatographic Conditions**

Column:

ACQUITY UPLC BEH Amide 2.1 x 100 mm, 1.7  $\mu m$ 

| Part Number:          | 186004801                                                                     |
|-----------------------|-------------------------------------------------------------------------------|
| Mobile Phase A:       | 80/20 MeCN/H <sub>2</sub> O with 0.2% triethylamine [TEA]                     |
| Mobile Phase B:       | 30/70 MeCN/H <sub>2</sub> O with 0.2% triethylamine [TEA]                     |
| Flow Rate:            | 0.12 mL/min                                                                   |
| Gradient:             | 10 minute gradient, 80%-50% MeCN (w/0.2% TEA) with 30 minute re-equilibration |
| Injection Volume:     | 1.3 μL (PLNO)                                                                 |
| Sample Concentration: | 1 mg/mL each                                                                  |
| Sample Diluent:       | 50/50 MeCN/H <sub>2</sub> O                                                   |
| Column Temperature:   | 35 °C                                                                         |
| Strong Needle Wash:   | 20/80 MeCN/H <sub>2</sub> O (800 μL)                                          |
| Weak Needle Wash:     | 75/25 MeCN/H <sub>2</sub> O (500 μL)                                          |
| Seal Wash:            | 50/50 MeCN/H <sub>2</sub> O                                                   |
| Instrument:           | Waters ACQUITY UPLC with ELSD                                                 |


### Gradient

| Time  | Profile |       |
|-------|---------|-------|
| (min) | %A      | %B    |
| 0.00  | 100.00  | 0.00  |
| 10.00 | 60.00   | 40.00 |
| 10.01 | 100.00  | 0.00  |
| 40.00 | 100.00  | 0.00  |

### **ELSD Conditions**

| Gain:                   | 200     |
|-------------------------|---------|
| Pressure:               | 40 psi  |
| Drift Tube Temperature: | 40 °C   |
| Nebulizer:              | Cooling |
| Data Rate:              | 10 pps  |
| Filter Time Constant:   | Normal  |

#### Results and Discussion



#### **Featured Products**

ACQUITY UPLC ELS Detector <a href="https://www.waters.com/514219">https://www.waters.com/514219</a>

WA60127, October 2009

| © 2022 Waters Corporation. All Rights Reserved. |
|-------------------------------------------------|
|                                                 |
|                                                 |
|                                                 |
|                                                 |
|                                                 |
|                                                 |
|                                                 |
|                                                 |
|                                                 |
|                                                 |
|                                                 |
|                                                 |
|                                                 |
|                                                 |
|                                                 |
|                                                 |
|                                                 |
|                                                 |
|                                                 |
|                                                 |
|                                                 |
|                                                 |