Waters™

アプリケーションノート

Simultaneous Quantitative Determination of Opioid Dependency Treatment Drugs in Human Urine Using UPLC-MS/MS

Russell Watts, Allan Traynor, Michelle Wood

日本ウォーターズ株式会社, Concateno plc

For forensic toxicology use only.

Abstract

In this application note we develop and validate a single simple and rapid UPLC-MS/MS method for the simultaneous quantitative determination of the opioid dependency treatment drugs methadone, buprenorphine, and dihydrocodeine in human urine.

Introduction

- Across the developed countries of the world, 0.4–0.8% of adults develop a dependence on illicit opioids.
- Common treatment methods include detoxification by supervised withdrawal and tapered doses of replacement drugs.²
- Buprenorphine, methadone and more recently, dihydrocodeine have been shown to be effective as replacement drugs for the treatment of opioid dependency.³⁻⁵
- Urine analysis of these compounds is essential to monitor abstinence and detect or confirm relapses.
- The associated overdose risk, potential for abuse and links with criminal activity has made the analysis of these compounds widespread in other areas of toxicology such as post-mortem and forensic.

Figure 1. Waters ACQUITY TQD System.

Experimental

Specimens

Validation was performed using human urine samples obtained from Concateno (London, UK) and Salford Royal NHS Foundation Trust Hospital (Manchester, UK). All samples were stored at -20 °C until analysis. Blank urine obtained from volunteers was used as the control material to prepare all the calibrators and quality controls (QC).

Standards

Standard reference material, deuterated analogues and drug metabolites were purchased from LGC Promochem (Teddington, UK). A mixed standard stock solution containing buprenorphine (BUP) and norbuprenorphine (NBUP) at 12.5 μ g/mL and methadone (METH), 2-ethylidene-1, 5-dimethyl-3, 3-diphenylpyrrolidine (EDDP) and dihydrocodeine (DHC) at 125 μ g/mL was prepared in methanol. A mixed internal standard (IS) stock solution containing buprenorphine-D4 (BUP-D4) and norbuprenorphine-D3 (NBUP-D3) at 1.25 μ g/mL and methadone-D9 (METH-D9), 2-ethylidene-1, 5-dimethyl-3, 3-diphenylpyrrolidine-D3 (EDDP-D3) and dihydrocodeine- D6 (DHC-D6) at 2.5 μ g/mL was prepared in methanol.

Sample Preparation

Enzymatic hydrolysis was performed on all samples, calibrators and QC's (250 μ L) after the addition of the IS (10 μ L). 1 M Sodium acetate, pH 5 (20 μ L) and β -glucuronidase (10 μ L – Helix pomatia, 100,000 units/mL, Sigma-Aldrich, Gillingham, UK) were added to the samples which were then heated at 56 °C for 1 hour. After hydrolysis, saturated disodium tetraborate buffer (250 μ L) was added to all samples and a liquid/liquid extraction (LLE) using a mixture of dichloromethane, hexane, diethyl ether and isoamyl alcohol (30:20:50:0.5) was performed. The supernatant was taken to dryness using a sample concentrator block (50 °C) under nitrogen, before being reconstituted with a 50/50 mix of methanol and mobile phase A (250 μ L).

LC Conditions

LC system:	Waters ACQUITY UPLC	
Column:	ACQUITY UPLC HSS T3 column (2.1 x 100 mm, 1.8 $$ $\mu m)$	
Column temp:	30 °C	
Flow rate:	300 L/min.	
Mobile phase A:	5 mM Ammonium acetate containing 0.025 % formic acid in water	
Mobile phase B:	Methanol	
Gradient:	15-95% B over 5 min.	
Injection volume:	10 L	
Strong Wash Solvent:	Mobile phase B (800 μL)	
Weak Wash Solvent:	Mobile phase A (2400 μL)	
MS Conditions		
MS system:	Waters TQ Detector	

Ionization mode:	ESI Positive
------------------	--------------

Capillary voltage: 3 kV

Collision Gas Pressure: 4.5 x 10⁻³ mbar

Acquisition Mode: Multiple reaction monitoring (MRM)

Data Processing: MassLynx v4.1 with TargetLynx

Results and Discussion

The MRM conditions used for the measurement of all compounds of interest and their respective internal standards are summarised in Table 1.

Compound	Precursor ion (m/z)	Product ion (m/z)	Cone voltage (V)	Collision energy (eV)
BUP	468	55	60	50
	468	414	60	35
NBUP	414	83	55	50
	414	101	55	45
METH	310	265	30	15
	310	223	30	20
EDDP	278	234	45	30
	278	186	45	30
DHC	302	199	50	35
	302	128	50	35
BUP-D4	472	59	65	50
NBUP-D3	417	83	55	45
METH-D9	319	268	35	15
EDDP-D3	281	234	45	30
DHC-D6	308	202	50	35

Table 1. MRM conditions used for all compounds and their internal standards.

Bold transitions used as the quantifier ion.

Figure 2 shows the MRM chromatograms obtained from a 5 μ L injection of a low level urine calibrator (50 ng/mL for METH, EDDP, and DHC, 5 ng/mL for BUP and NBUP). The quantifier/qualifier ion ratios for all compounds were monitored for all calibrators, QC's and samples and were found to be within $\pm 20\%$ of the target ion ratios.

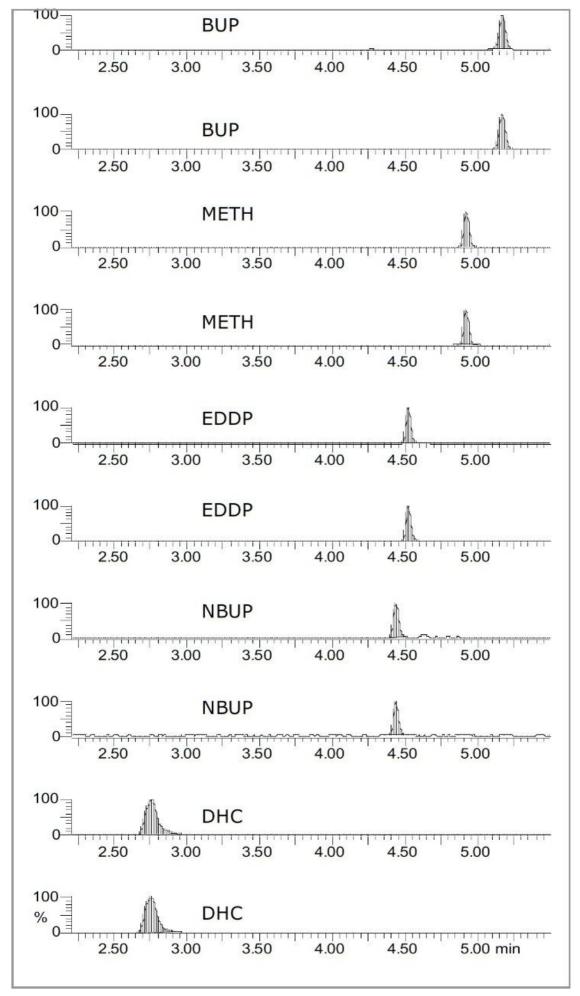


Figure 2. MRM chromatograms for qualifier and quantifier ions obtained from a low level calibrator. The

- 2. Mattick RP, Hall WD. Lancet 1996; 347: 97-100.
- 3. Mattick RP, Kimber J, Breen C, Davoli M. Cochrane Database Syst Rev 2008; 2: CD002207.
- 4. NICE technology appraisal guidance 114. www.nice.org.uk/TA114.
- 5. Robertson JR, Raab GM, Bruce M, McKenzie JS, Storkey HR, Salter A. Addiction 2006; 101: 1752–59.
- 6. Polettini A, Huestis MA. J. Chromatogr. B, 2001; 754: 447-459.

Acknowledgements

George Waite, Salford Royal NHS Foundation Trust Hospital (Manchester, UK) for supplying anonymous patient samples containing dihydrocodeine.

Featured Products

ACQUITY UPLC System https://www.waters.com/514207

MassLynx MS Software https://www.waters.com/513662

TargetLynx https://www.waters.com/513791>

720003005, July 2009

© 2021 Waters Corporation. All Rights Reserved.