Waters™

アプリケーションノート

EPA Method 8310.0 Determination of Polycyclic Aromatic Hydrocarbons in Ground Water and Wastes

日本ウォーターズ株式会社

This is an Application Brief and does not contain a detailed Experimental section.

Abstract

This application brief demonstrates the determination of Polycyclic aromatic hydrocarbons in ground water and wastes.

Introduction

Polycyclic aromatic hydrocarbons (PAHs) are one of the most widespread organic pollutants. PAHs are made up of fused aromatic rings and are formed during the combustion of carbon-based fuels (wood, coal, diesel), as well as being present in crude oil. The United States Environmental Protection Agency (US EPA) has classified seven PAH compounds as being potentially carcinogenic including benz[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, chrysene, dibenz[a,h]anthracene, and indeno[1,2,3-cd]pyrene.

Experimental

HPLC Conditions

Instrument:	Waters Alliance HPLC System with PDA and Fluorescence Detectors
Eluent:	Water/Acetonitrile
Column:	Waters PAH 4.6 x 250 mm @ 30 °C
Injection:	$20~\mu\text{L}$ of Supelco standard EPA 610 (#48743) diluted 1:50 in 40:60 water/acetonitrile
Flow rate:	1.2 mL/min
Detection:	UV @ 254 nm and fluorescence using timed programmed wavelengths
Data:	Waters Empower Software

Sample Preparation

MeCl₂ extraction.

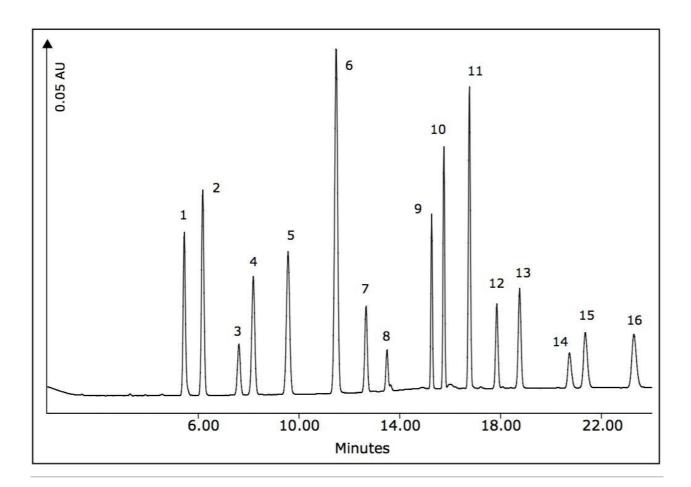
Eluent Preparation

Filter and degas through a 0.45 μm filter.

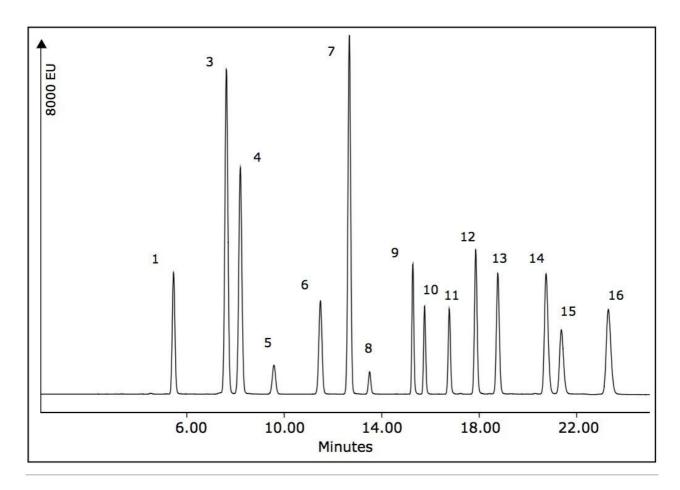
A: Water

B: Acetonitrile

Time	Flow	%A	%В	Curve
Initial	1.2	40	60	-
12.0	1.2	0	100	9
23.0	1.2	40	60	11


Eluent gradient.

	Analyte	UV max (nm)	EX (nm)	EM (nm)	Detection Limit (ppb) ¹
1	Naphthalene	220	277	330	0.14
2	Acenaphthylene	229	NA	NA	NA
3	Acenaphthene	227	270	323	0.01
4	Fluorene	261	265	310	0.03
5	Phenanthrene	251	252	365	0.02
6	Anthracene	252	250	402	0.01
7	Fluoranthene	236	284	467	0.02
8	Pyrene	240	332	378	0.01
9	Benzo(a)anthracene	287	284	390	0.01
10	Chrysene	267	270	367	0.04
11	Benzo(b)fluoranthene	256	298	436	0.09
12	Benzo(k)fluoranthene	307	303	432	0.01
13	Benzo(a)pyrene²	296	280	410	0.03
14	Dibenzo(a,h)anthracene	297	294	398	0.01
15	Benzo(g,h,I)perylene	299	290	420	0.03
16	Indeno(1,2,3-cd)pyrene	250	305	480	0.49


 $^{^{1}}$ Fluorescence mode used for detection limit determination, no pre concentration. Seven replicates per 40 CFR pt. 136 App. B.

PAH target analytes.

 $^{^{2}}$ Regulated compound; action level 0.17 ppb.

Standard chromatogram, UV @ 254 nm, 1–20 ppm PAH analytes.

Standard chromatogram, fluorescence/programmed wavelengths, 1-20 ppm PAH analytes.

Related Documents	Literature Code
The Determination of Biodegradation Products of PAH Using LC/MS/MS	WA20747
Waters PAH Columns Improve Analysis of PAH Compounds	720000382EN

Featured Products

Empower Cirromatography Data System https://www.waters.com/10190009
720002736, August 2008

© 2021 Waters Corporation. All Rights Reserved.