
Waters™

應用手冊

EPA Method 535.0 Measurement of Chloracetanilide and Other Acetamide Herbicide Degradates in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC-MS/MS)

Waters Corporation

EPA Method 535.0 Measurement of Chloracetanilide and Other Acetamide Herbicide Degradates in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC-MS/MS)

This is an Application Brief and does not contain a detailed Experimental section.

Abstract

This application brief demonstrates the measurement of chloracetanilide and other acetamide herbicide

degradates in drinking water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry

(LC-MS/MS).

Introduction

Chloroacetanillide and acetamide herbicides are widely used in the United States for the control of broadleaf and

annual weeds on crops, such as corn and soybeans. These herbicides are thought to be degraded by microbial

action to the oxanilic acid (OA) and ethanesulfonic acid (ESA) metabolites of the parent compounds. The OA and

ESA metabolites are more water soluble and therefore more mobile than the parent herbicides. Several studies by

the United States Geological Survey (USGS) and others have reported higher occurrences of the OA and ESA

metabolites than the parent herbicides in both ground and surface water. The United States Environmental

Protection Agency (US EPA) Method 535 was developed for the determination of OA and ESA metabolites of

alachlor, acetochlor, metochlor, propachlor, flufenacet, and dimetheamide in drinking water. The European Union

(EU) regulation regarding drinking water (EC Directive 98/83/EC), provides a general rule for pesticides and

metabolites. This regulation limits the maximum admissible concentration (MAC) at 0.1 ppb for each

individual component, with the total concentration not to exceed 0.5 ppb.

Experimental

LC Conditions

Instrument:

Waters ACQUITY UPLC System

Eluent:

5 mM ageous ammomium acetate/methanol

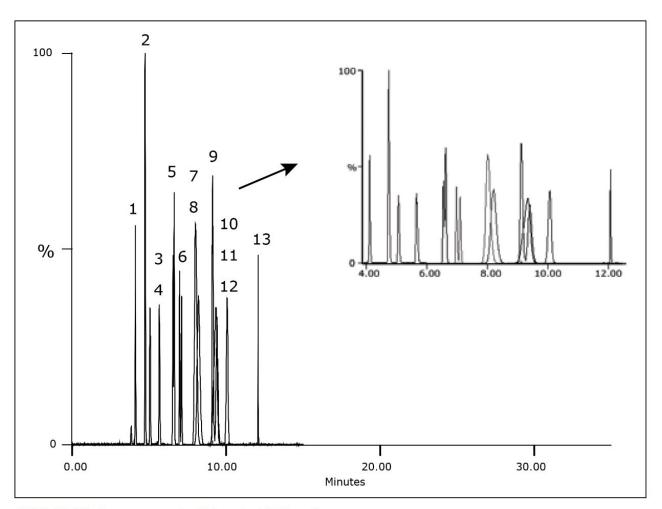
Column:	ACQUITY UPLC BEH C ₁₈ , 2.1 x 150 mm, 1.7 μ m @ 60 °C	
Injection:	50 μL	
Flow rate:	0.45 mL/min	
Data:	Waters MassLynx Software	
MS Conditions		
Instrument:	Waters TQ Detector or Quattro micro API Mass Spectrometer	
Ion mode:	Electrospray negative (ESI ⁻)	
Mode:	Multiple reaction monitoring (MRM). The MRM transitions, cone voltages (CV) and collision energies (CE) are listed in in the top right column.	

	Compound List	MRM Transition	CV	CE
1	Propachlor OA	206.3>134.2	13	11
2	Flufenacet OA	224.3>152.3	13	11
3	Propachlor ESA	256.3>80.0	35	25
4	Flufenacet ESA	274.3>80.0	35	25
5	Dimethenamid OA	270.3>198.3	15	11
6	Dimethenamid ESA	320.3>80.0	40	30
7	Acetachlor OA	264.1>146.2	20	11
8	Alachlor OA	264.1>160.1	20	11
9	Metolachlor OA	278.4>206.3	20	11
10	Alachlor ESA	314.1>80.0	40	25
11	Acetachlor ESA	314.1>80.0	40	25
12	Metolachlor ESA	328.2>80.0	37	25
13	Butachlor ESA	356.2>80.0	35	25

Optimized MRM transition parameters for EPA method 535 in ES-.

Sample Preparation

A 250 mL water sample is extracted using a graphitized carbon SPE cartridge, dried and made up to 1 mL with 5 mM ammonium acetate.


Eluent Preparation

A: 5 mM aqueous ammonium acetate

B: Methanol

Time	Flow	%A	%B
Initial	0.45	90	10
5.0	0.45	75	25
7.5	0.45	66	34
10.5	0.45	65	35
11.0	0.45	10	90
13.0	0.45	90	10

Eluent gradient.

UPLC®/MS/MS chromatogram for EPA method 535 analytes.

Related Documents

- Acetamide Herbicides and Metabolites in Drinking Water <u>WA31763.10 < https://www.waters.com/webassets/cms/library/docs/symmetry10.pdf></u>
- Analysis of Chloroacetanilide and Acetamide Herbicide Degradates in Drinking Water by UPLC-MS/MS 720001999EN https://www.waters.com/nextgen/us/en/library/application-notes/2006/analysis-of-chloroacetanilide-and-acetamide-herbicide-degradates-in-drinking-water-by-uplc-ms-ms.html

Featured Products

- ACQUITY UPLC System https://www.waters.com/514207
- MassLynx MS Software https://www.waters.com/513662

720002728, August 2008

© 2021 Waters Corporation. All Rights Reserved.