
Waters[™]

应用纪要

Automated Qualitative Analysis of Complex Mixtures Using ChromaLynx XS Software

Keith Worrall, Peter Hancock

Waters Corporation

This is an Application Brief and does not contain a detailed Experimental section.

Abstract

This application brief highlights the capabilities of automated peak identification, library searching, and chromatogram comparison software within complex mixture analysis.

Benefits

Rapid detection, identification, and semi-quantitative determination of all components in complex mixtures

Introduction

Complex mixture analysis is a term that is applicable to a wide-range of MS application areas. A prerequisite is efficient chromatographic separation, whether performed by GC or ACQUITY UPLC. Typically data is acquired in full scan mode on a quadrupole or time-of-flight (ToF) mass spectrometer, such as the Waters GCT Premier or LCT Premier XE. ToF offers significant benefits such as improved full scan sensitivity, reduced cycle time, and high resolution.

The primary challenges for an analyst when reviewing acquired data are:

- Identifying eluting peaks, primarily using library searching
- Deconvoluting compounds where chromatographic separation is not complete
- Comparing chromatograms to identify similarities or differences between acquired mixture samples

Each of these processes is time-consuming when performed manually, often resulting in a large number of printed chromatograms, mass spectra, library search results, and compound lists. A single data file could take hours to process, having only taken a few minutes to acquire, with a high probability for error during the manual process.

This technical note shows examples of the use of ChromaLynx XS Software for complex mixture analyses including:

• Routine automated identification of peaks in complex chromatograms using deconvolution

 Comparison of acquired data files such as comparing a known sample with a 'complaint' or tainted sample to identify unique or common components

ChromaLynx XS offers a number of automated features to reduce the amount of time taken for these processes, and minimizes the possibility for errors compared with manual processing. Primary features include:

- Automated high resolution deconvolution generating library searchable, background subtracted mass spectra
- Automated exact mass scoring of library results
- All results data stored in one interactive browser file
- Chromatogram comparison highlights unique or common components between different acquired files

Experimental

Data acquisition and processing

Some representative data from the GCT Premier and LCT Premier XE were used, along with data acquired in EI+ and ESI+/- ionization modes.

All data were acquired using Waters MassLynxTM Software v. 4.1, with data processed using the ChromaLynx XS Application Manager.

Within ChromaLynx XS, acquired raw data files are processed from the sample list user interface, generating a single browser file that contains all of the information about the deconvoluted results:

- Background subtracted mass spectra
- Extracted exact mass chromatograms (XIC)
- Library search results
- Exact mass confirmation of library results

Results and Discussion

Figure 1 presents typical complex GC-MS and LC-MS chromatograms, which can be seen to contain a large number of eluting peaks. To manually process these samples, identifying all 100 plus major peaks would take a considerable amount of time.

This process would require the generation of clean background subtracted spectra, sending the spectrum to a library search engine, and then collating the resultant library results. This does not include the added difficulties associated with deconvoluting close or partially co-eluting peaks or having to return to a previously searched peak. Automation of this process can save both time and reduce errors.

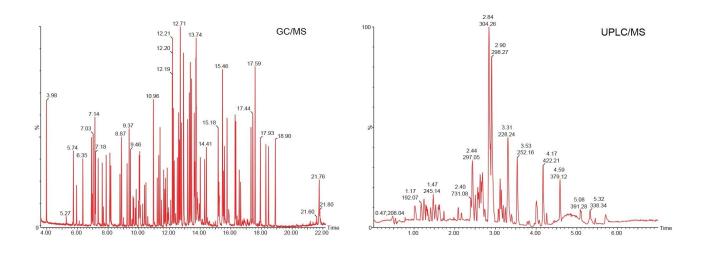


Figure 1. Typical complex GC-MS and UPLC-MS chromatograms.

Figure 2 shows the ChromaLynx XS browser window with identified peaks denoted using colored pointers. For the complex GC-MS chromatogram shown in Figure 1, ChromaLynx XS has automatically located, library searched, and exact mass scored a few hundred peaks in a matter of minutes.

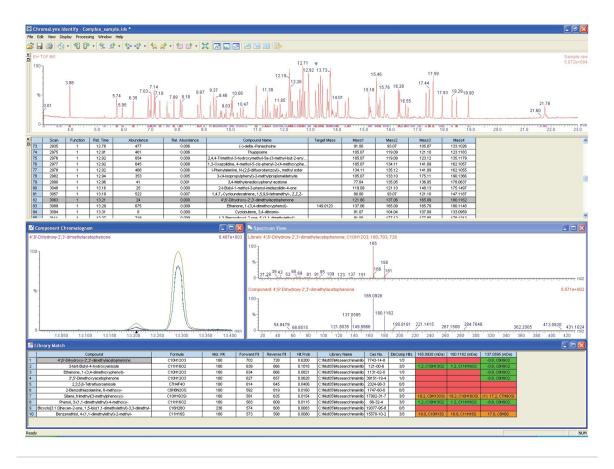


Figure 2. ChromaLynx XS Identify interactive browser report of the processed GC-MS complex chromatogram from Figure 1.

Figure 3 shows the ChromaLynx browser window for the complex UPLC-MS chromatogram, using an alternative candidate screening display, where only the compounds within a library are identified and highlighted.

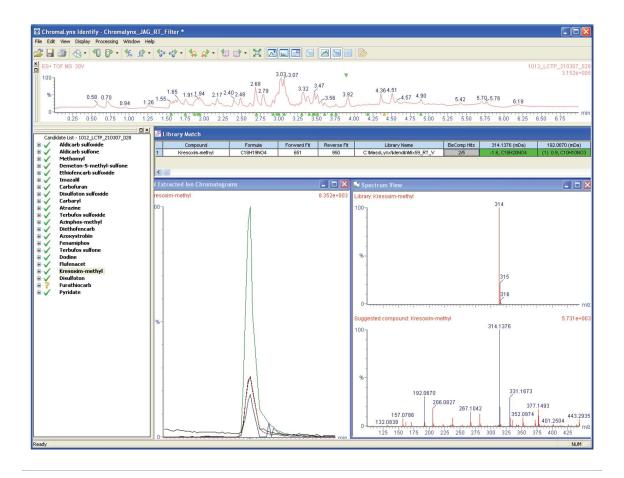
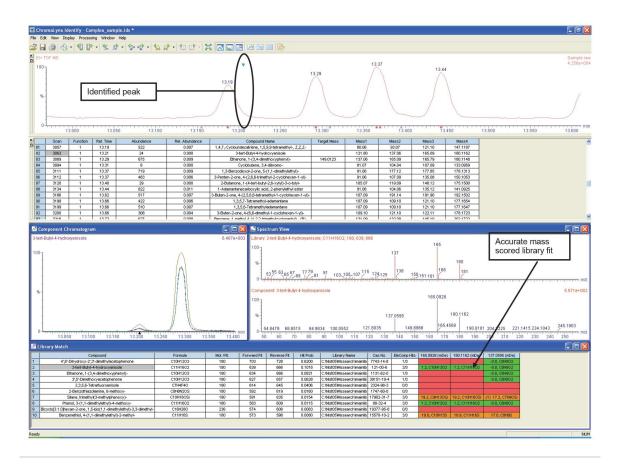



Figure 3. ChromaLynx XS Identify interactive browser report of the processed UPLC-MS complex chromatogram from Figure 1.

Automated library fit assignment

Automated library fit results can be scored according to the exact masses acquired using high resolution ToF instruments. The correct library fit is difficult to assign using nominal mass information only. As shown in figure 4 (highlighted in green), nine out of the ten library fits have a molecular mass of 180, which correspond to the molecular ion in the acquired mass spectrum.

Figure 4. ChromaLynx XS Identify interactive browser highlights the capability of deconvolution and exact mass library scoring.

When comparing the acquired mass spectrum with the library spectra, it is difficult to assign a library fit with a high degree of certainty. This case highlights a situation where the high fullspectrum sensitivity of ToF has allowed a very low intensity peak to be detected. Because of the low intensity, it is very difficult to obtain good library fit results.

If the data had been acquired with nominal mass information only, selection of a tentative library fit would not be easy. By applying the exact mass capability, it is possible to propose that the most likely library hits are the result of compounds having the elemental composition $C_{11}H_{16}O_2$ which can now be easily distinguished from the compounds proposed by library search alone.

Exact mass scoring

Accurate mass scoring eases this process by automatically submitting each library entry's molecular composition to elemental composition calculation software. Within the processing setup, two thresholds can be specified:

1. The first threshold determines the mass accuracy that would give tentative agreement between the acquired and theoretical masses (low mass error).

2. A second threshold that specifies the mass deviation above which an acquired mass is high.

The deconvoluted masses for the acquired spectrum are then displayed, highlighted using colored backgrounds. Green shows a deviation of between zero and the tentative (low) threshold; amber shows a deviation between the low and high thresholds; and red shows where the mass deviation is above the high threshold. In this case, the second and eighth library fits are supported by the exact mass scoring of the molecular and fragment ions, as shown in Figure 4. Manually generating this information would be laborious, with a high probability of error.

Manual comparison

Manual comparison of chromatograms is another time-consuming process that can be automated by using ChromaLynx XS. When using the Compare feature, reports can be generated that specify what the common or unique components in complex mixtures are. This is a common process when investigating complaints within the flavor and fragrance, food, fine chemicals, or environmental industries.

Often the differences between chromatograms can highlight issues resulting from adulteration, tainting, or contamination of products or sample matrices (essential oils, soil, drinking water, etc.).

The browser window shown in Figure 5 compares a premix essential oil with a peppermint essential oil. Although ChromaLynx XS does not perform detailed quantification, it can compare peak areas, either against each other or against the total ion count (TIC). Here, the two complex mixtures have been compared on a mass and retention time basis, with QC scoring highlighting a pair of common peaks that also have similar area counts (in this case, a difference of less than 20% between the two samples).

	Vindow Help												
	- 16 - 18 N												GCTP_291
1			*			12.88							1.9
5.	.59 6 20	0.77						13.12					
5.45		5.30 6.77	8.	15 8.34 9.13	10.39 10.72	12.27	7	13.35	5 13.66 14.07				
b	بالالسبيب الال						<u> </u>	- Alin	mh	·····			
					▼9.41								GCTP_291 2.3
1					¥ 3.41								
-		7.16		1	9.47								
5	6.20 6.31	7.10 7.55	7.75		10.32	12	12	2.88	٨.,				
4.5 5.0 5.5	5 6.0	6.5 7.0 7.	5 8.0	8.5 9.0	9.5 10.0 10.5 11.0 11.	5 12.0	12.5	13.0 1	3.5 14.0	14.5 15.0	0 15.5	16.0 16.	5 17.0 17.5
СТР_291106_015													
Sample Name ID Scr		Relative Retention Time				Saturated Peaks	s Deta RT	Detta Scan	Abundance Ratio	QC Limit (%)	C Pass		
GCTP_291106_015 4 46 GCTP_291106_015 6 65			2050 2867	0.031	3-Carene 1,4-Cyclohexadiene, 1-methyl-4-(1-methylethyl)-	1	-				_		
GCTP_291106_015 7 68	6.3041		1493	0.023	Cyclohexene, 4-methylene-1-(1-methylethyl)-	1							
GCTP_291106_015 14 89			233	0.004	1,3,8-p-Menthatriene	0							
GCTP_291106_015 15 91 GCTP_291106_015 21 151			3061	0.047	Cyclohexene, 1-methyl-5-(1-methylethenyl)-, (R)- Cyclohexenone, 5-methyl-2-(1-methylethyl)-	1	-	-			_		
OCTP_291106_015 23 156			1691	0.026	Cyclohexanone, 5-methyl-2-(1-methylethyl)- (2S-tr.	. 1	-		-		_		
GCTP_291106_015 35 250			325	0.005	Cyclobuta[1,2:3,4]dicyclopentene, decahydro-3a-m.	0							
GCTP_291106_015 40 265			5545	0.085	Longitolene-(V4)	1							
GCTP_291106_015 48 286	87 13.6586		508	0.008	Cyclohexene, 6-etherryl-6-methyl-1-(1-methylethyl)-				1				
uuur_annuu_015 48 28	87 13.6586		508	0.008									
	87 13.6586		508	0.008									
CTP_291106_014 Sample Name D Scar	n Retention Time	Relative Retention Time		Relative Abundance		0	Deta RT	Deta Scan	Abundance Ratio		IC Pass		
CTP_291106_014 Sample Name D Scer CCTP_29100_014 4 467	n Retention Time 7 5.5906	Relative Retention Time	Abundance 385	Relative Abundance 0.006	Oyconevane, 6 etherny-6 -methy-61 -(1 -methylethyl)- Compound Name 3 - Cererce	Saturated Pesks	0.0031	1	0.1878	20	×		
CTP_291106_014 Sample Name D Scar OCTP_291106_014 5 651 OCTP_291106_014 5 651	n Retention Time 7 5.5906 6.2030	Relative Retention Time	Abundance 385 211	Relative Abundance 0.006 0.003	Conclorevane, 6-etherny-6-methy-6-1-(1-methylethyl)- Compound Name 3-Carere 1,4-Cycloheadaer, Jadhyl-4-(1-methylethyl)-	Saturated Pesks	0.0031	1	0.1878	20 20	X		
CTP_291106_014 Sempte Name D Scar 0CTP_2010_014 4 407 0CTP_2010_014 5 61 0CTP_2010_014 6 62 0CTP_2010_014 8 68	n Retention Time 7 5.5906 1 6.2030 2 6.3069 3 7.0208	Relative Retention Time	Abundance 385 211 701 84	Relative Abundance 0.006 0.003 0.010 0.001	Oyconevane, 6 etherny-6 -methy-61 -(1 -methylethyl)- Compound Name 3 - Cererce	Saturated Pesks	0.0031	1	0.1878 0.0736 0.4693 0.3621	20 20 20 20	×		
TP 291106_014 Seeph News D Score OCTP_29110_014 4 47 OCTP_29110_014 5 61 OCTP_29110_014 8 682 OCTP_29110_014 8 682 OCTP_29110_014 18 682 OCTP_29110_014 10 919	n Retention Time 7 5.5906 1 6.2030 2 6.3069 8 7.0208 8 7.0208	Relative Retention Time	Abundance 385 211 701 84 831	Relative Abundance 0.006 0.003 0.010 0.001 0.001	Opcom/come 6-ethem/c6-enethy/c1-(1-exethy/ethy/c)- Compound Name 3-0-energie 1_4/Crysteres 3-0-energie Opcome -0-penergie Opcome -0-penergie Opcome -0-penergie Opcome -0-penergie Opcome -0-penergie Opcome penergie	0 Saturated Peaks 0 0 1 1 0 0	0.0031 0.0030 0.0027 0.0027 0.0020	1 1 1 1 1 1	0.1878 0.0736 0.4693 0.3621 0.2715	20 20 20 20 20 20 20	XXXXX		
CTP_291106_014 C Score CCTP_2010_014 4 6 60 CCTP_2010_014 4 60 60 CCTP_2010_014 6 60 60 CCTP_2010_014 6 60 60 CCTP_2010_014 6 80 60 CCTP_2010_014 10 19 60 CCTP_2010_014 20 151 60	n Retention Time 7 5.506 1 6.2030 2 6.3069 3 7.0208 3 7.0972 9 9.9371	Relative Retention Time	Abundance 385 2111 701 84 831 5682	Relative Abundance 0.006 0.003 0.010 0.001 0.001 0.001 0.033	Corpcarevene, 6-etherny-6-methy-6-1-(1-methylethyl)- Compound Name 3-Corene 1_4-Cryclehousdeen, 1-methyl-4-(1-methylethyl)- Cryclehousdeen, 4-methyl-4-(1-methylethyl)- 1_3,8-Methylatherna (1-methylethyl)- Cryclehousdeen, 5-6(1-methylethyl)- Cryclehousdeen, 5-6(1-methylethyl)- Cryclehousdeen, 5-6(1-methylethyl)-	0 Saturated Pesks 0 0 1 1 0 0 1	0.0031 0.0030 0.0027 0.0027 0.0020 0.0020	1 1 1 1 1 0	0.1878 0.0736 0.4693 0.3621 0.2715 49.8677	20 20 20 20 20 20 20 20	X X X X		
CTP_291106_014 Sereito Name D Score CCTP_20110_014 4 47 CCTP_20110_014 5 61 CCTP_20110_014 8 682 CCTP_20110_014 8 682 CCTP_20110_014 8 682 CCTP_20110_014 10 919	n Retention Time 7 5.5906 1 6.2030 2 6.3069 3 7.0209 3 7.0972 9 9.0971 2 9.2401	Relative Retention Time	Abundance 385 211 701 84 831	Relative Abundance 0.006 0.003 0.010 0.012 0.083 0.023	Compound Name Compound Name Compound Name Compound Name Acciletoward, Compound Name Acciletoward, Compound Name Acciletoward, Compound Name Co	0 Saturated Peaks 0 0 1 1 0 0	0.0031 0.0030 0.0027 0.0027 0.0020	1 1 1 1 1 1	0.1878 0.0736 0.4693 0.3621 0.2715	20 20 20 20 20 20 20	XXXXX	(
CTP 291106 D14 Sende Nees D Sce OCTP_20100 014 4 67 OCTP_201100 014 4 67 OCTP_201100 014 6 60 OCTP_201100 014 6 60 OCTP_201100 014 6 60 OCTP_201100 014 0 90 OCTP_201100 014 0 90 OCTP_201100 014 90 900 OCTP_201100 014 91 926	n Retention Time 7 5.5906 1 6.2030 2 6.3089 3 7.0208 3 7.0208 3 7.0208 3 7.0208 3 7.0208 3 7.0208 3 7.0208 3 7.0208 3 7.0208 4 7.0208 4 7.0208 5 9.90971 2 9.2401 6 1.2.3842 5 1.2.3842	Relative Retention Time	Abundance 395 211 701 84 831 5682 1605 231 1386	Relative Abundance 0.005 0.001 0.010 0.012 0.083 0.023 0.023 0.020	Compound Name Compound Name Compound Name 3-Carere 1.4-Cryclareauree, 1-aeditylethyl)- Cryclareauree, 1-aeditylethyl)- Cryclareauree, 1-aeditylethyl, Cryclareauree, 1-aeditylethyl, Cryclareauree, 5-aeditylethyl, Cryclareauree, 5-aeditylethyl, Cryclareauree, 5-aeditylethyl, Cryclareauree, 5-aeditylethyl, Clareauree, Clareauree, Cryclareauree, Clareauree,	Saturated Pesica 0 0 1 1 1 1 0 0 0	0.0031 0.0030 0.0027 0.0027 0.0020 0.0004 0.0018 0.0002 0.0002	1 1 1 1 1 0 1	0.1878 0.0736 0.4683 0.3621 0.2715 49.8677 0.9490 0.7112 0.2500	20 20 20 20 20 20 20 20 20 20 20 20	xxxxxx	(QC Scoring
CTD 291106 014 Sergite Name D Scarge OCTP_2010 014 4 67 OCTP_2010 014 4 67 OCTP_2010 014 4 67 OCTP_2010 014 6 60 OCTP_2010 014 6 60 OCTP_2010 014 6 60 OCTP_2010 014 10 60 OCTP_2010 014 30 90 OCTP_2010 014 30 90	n Retention Time 7 5.5906 1 6.2030 2 6.3089 3 7.0208 3 7.0208 3 7.0208 3 7.0208 3 7.0208 3 7.0208 3 7.0208 3 7.0208 3 7.0208 4 7.0208 4 7.0208 5 9.90971 2 9.2401 6 1.2.3842 5 1.2.3842	Relative Relation Time	Abundance 385 211 701 84 831 5882 1605 231	Relative Abundance 0.005 0.001 0.010 0.012 0.083 0.023 0.023 0.020	Compound Name Co	0 Saturated Peaks 0 0 1 0 1 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0031 0.0030 0.0027 0.0027 0.0020 0.0004 0.0018 0.0002	1 1 1 1 0 1 0	0.1878 0.0736 0.4693 0.3621 0.2715 49.8677 0.9490 0.7112	20 20 20 20 20 20 20 20 20 20 20	xxxxxx	[(
CTD 291106 014 Sergite Name D Scarge OCTP_2010 014 4 67 OCTP_2010 014 4 67 OCTP_2010 014 4 67 OCTP_2010 014 6 60 OCTP_2010 014 6 60 OCTP_2010 014 6 60 OCTP_2010 014 10 60 OCTP_2010 014 30 90 OCTP_2010 014 30 90	n Retention Time 7 5.5906 1 6.2030 2 6.3089 3 7.0208 3 7.0208 3 7.0208 3 7.0208 3 7.0208 3 7.0208 3 7.0208 3 7.0208 3 7.0208 4 7.0208 4 7.0208 5 9.90971 2 9.2401 6 1.2.3842 5 1.2.3842	Relative Retention Time	Abundance 395 211 701 84 831 5682 1605 231 1386	Relative Abundance 0.005 0.001 0.010 0.012 0.083 0.023 0.023 0.020	Compound Name Compound Name Compound Name 3-Carere 1.4-Cryclareauree, 1-aeditylethyl)- Cryclareauree, 1-aeditylethyl)- Cryclareauree, 1-aeditylethyl, Cryclareauree, 1-aeditylethyl, Cryclareauree, 5-aeditylethyl, Cryclareauree, 5-aeditylethyl, Cryclareauree, 5-aeditylethyl, Cryclareauree, 5-aeditylethyl, Clareauree, Clareauree, Cryclareauree, Clareauree,	Saturated Pesica 0 0 1 1 1 1 0 0 0	0.0031 0.0030 0.0027 0.0027 0.0020 0.0004 0.0018 0.0002 0.0002	1 1 1 1 0 1 0	0.1878 0.0736 0.4683 0.3621 0.2715 49.8677 0.9490 0.7112 0.2500	20 20 20 20 20 20 20 20 20 20 20 20	xxxxxx	(
CTP 291106 D14 Sende Nees D Sce OCTP_20100 014 4 67 OCTP_201100 014 4 67 OCTP_201100 014 6 60 OCTP_201100 014 6 60 OCTP_201100 014 6 60 OCTP_201100 014 0 90 OCTP_201100 014 0 90 OCTP_201100 014 90 900 OCTP_201100 014 91 926	n Retention Time 7 5.5906 1 6.2030 2 6.3089 3 7.0208 3 7.0208 3 7.0208 3 7.0208 3 7.0208 3 7.0208 3 7.0208 3 7.0208 3 7.0208 4 7.0208 4 7.0208 5 9.90971 2 9.2401 6 1.2.3842 5 1.2.3842	Relative Reference Taxe	Abundance 395 211 701 84 831 5682 1605 231 1386	Relative Abundance 0.005 0.001 0.010 0.012 0.083 0.023 0.023 0.020	Compound Name Compound Name Compound Name 3-Carere 1.4-Cryclareauree, 1-aeditylethyl)- Cryclareauree, 1-aeditylethyl)- Cryclareauree, 1-aeditylethyl, Cryclareauree, 1-aeditylethyl, Cryclareauree, 5-aeditylethyl, Cryclareauree, 5-aeditylethyl, Cryclareauree, 5-aeditylethyl, Cryclareauree, 5-aeditylethyl, Clareauree, Clareauree, Cryclareauree, Clareauree,	Saturated Pesica 0 0 1 1 1 1 0 0 0	0.0031 0.0030 0.0027 0.0027 0.0020 0.0004 0.0018 0.0002 0.0002	1 1 1 1 0 1 0	0.1878 0.0736 0.4683 0.3621 0.2715 49.8677 0.9490 0.7112 0.2500	20 20 20 20 20 20 20 20 20 20 20 20	xxxxxx	[(
CTD 291106 014 Sergite Name D Scarge OCTP_2010 014 4 67 OCTP_2010 014 4 67 OCTP_2010 014 4 67 OCTP_2010 014 6 60 OCTP_2010 014 6 60 OCTP_2010 014 6 60 OCTP_2010 014 10 60 OCTP_2010 014 30 90 OCTP_2010 014 30 90	n Retention Time 7 5.5906 1 6.2030 2 6.3089 3 7.0208 3 7.0208 3 7.0208 3 7.0208 3 7.0208 3 7.0208 3 7.0208 3 7.0208 3 7.0208 4 7.0208 4 7.0208 5 9.90971 2 9.2401 6 1.2.3842 5 1.2.3842	Relative Referition Time	Abundance 395 211 701 84 831 5682 1605 231 1386	Relative Abundance 0.005 0.001 0.010 0.012 0.083 0.023 0.023 0.020	Compound Name Compound Name Compound Name 3-Carere 1.4-Cryclareauree, 1-aeditylethyl)- Cryclareauree, 1-aeditylethyl)- Cryclareauree, 1-aeditylethyl, Cryclareauree, 1-aeditylethyl, Cryclareauree, 5-aeditylethyl, Cryclareauree, 5-aeditylethyl, Cryclareauree, 5-aeditylethyl, Cryclareauree, 5-aeditylethyl, Clareauree, Clareauree, Cryclareauree, Clareauree,	Saturated Pesica 0 0 1 1 1 1 0 0 0	0.0031 0.0030 0.0027 0.0027 0.0020 0.0004 0.0018 0.0002 0.0002	1 1 1 1 0 1 0	0.1878 0.0736 0.4683 0.3621 0.2715 49.8677 0.9490 0.7112 0.2500	20 20 20 20 20 20 20 20 20 20 20 20	xxxxxx	[(
CTP 291106 D14 Sende Nees D Sce OCTP_20100 014 4 67 OCTP_201100 014 4 67 OCTP_201100 014 6 60 OCTP_201100 014 6 60 OCTP_201100 014 6 60 OCTP_201100 014 0 90 OCTP_201100 014 0 90 OCTP_201100 014 90 900 OCTP_201100 014 91 926	n Retention Time 7 5.5906 1 6.2030 2 6.3089 3 7.0208 3 7.0208 3 7.0208 3 7.0208 3 7.0208 3 7.0208 3 7.0208 3 7.0208 3 7.0208 4 7.0208 4 7.0208 5 9.90971 2 9.2401 6 1.2.3842 5 1.2.3842	Relative Reteritor Time	Abundance 395 211 701 84 831 5682 1605 231 1386	Relative Abundance 0.005 0.001 0.010 0.012 0.083 0.023 0.023 0.020	Compound Name Compound Name Compound Name 3-Carere 1.4-Cryclareauree, 1-aeditylethyl)- Cryclareauree, 1-aeditylethyl)- Cryclareauree, 1-aeditylethyl, Cryclareauree, 1-aeditylethyl, Cryclareauree, 5-aeditylethyl, Cryclareauree, 5-aeditylethyl, Cryclareauree, 5-aeditylethyl, Cryclareauree, 5-aeditylethyl, Clareauree, Clareauree, Cryclareauree, Clareauree,	Saturated Pesica 0 0 1 1 1 1 0 0 0	0.0031 0.0030 0.0027 0.0027 0.0020 0.0004 0.0018 0.0002 0.0002	1 1 1 1 0 1 0	0.1878 0.0736 0.4683 0.3621 0.2715 49.8677 0.9490 0.7112 0.2500	20 20 20 20 20 20 20 20 20 20 20 20	xxxxxx	[(

Figure 5. ChromaLynx XS Compare interactive browser showing the common components between premix and peppermint essential oils.

This QC scoring is highlighted by assigning a green tick to the peak in question. The Compare report shows that there are not many common peaks, indicating that ten compounds are common with one compound present at a similar intensity when comparing the premix and peppermint essential oils.

ChromaLynx XS Compare can also display the unique components detected within different samples, as shown in Figure 6. In this case, peppermint oil is not one of the constituent components of the premix oil, so a much larger number of unique components are being highlighted.

Edit View Display Processing V													
. 4 (• 🕆 • 🕱 🛛												
10-7							12	88					GCTP_2911 1.94
6- 5	.59 6.20	8.30 6.77			10.72		. 1	13.12					
5.4		5.50	8.1	5 8.34 9.13	10.39 10.72	1,68		13.35	13.66 14.07				
0-12	البججالا	- And my			Anna Allan	بالبسب	<u> </u>	minn	mult				A
													GCTP_2911
0-					9.41								2.38
				1									
K		7.16		1									
1	59 6.20 6.31	7.10 7.55	7.75		10.32	12	12	88					
0	<u> </u>			, , , , , , , , , , , , , , , , , , ,	NU Chan An a Ala			<u> </u>					
4.5 5.0 5.	5 6.0	6.5 7.0 7.	5 8.0	8.5 9.0	9.5 10.0 10.5 11.0 11.5	i 12.0	12.5	13.0 1	3.5 14.0	14.5 1	5.0 15.5	16.0 16.5	17.0 17.5
CTP 291106 015													
Sample Name ID Sc	an Retention Time	Relative Retention Time	Abundance	Relative Abundance	Compound Name	Saturated Peaks	Delta RT	Deta Scan	Abundance Ratio	QC Limit (%)	QC Pass		
GCTP_291106_015 1 8			38	0.001	2-Octanamine	0							
GCTP_291106_015 2 1 GCTP_291106_015 3 42			579	0.009	Pertluorotributylamine Tricyclo[4.1.0.0(2.4)]heptane, 5-(pherv/thio)-, (1à.2	0							
GCTP_291106_015 3 4. GCTP_291106_015 9 71			213	0.002	Experience (1.1.0.02,4) [neptane, 5-(pnerivitnio)-, (1a,2 Bicyclo(3.1.0]hex-2-ene, 4-methyl-1-(1-methylethyl)-								
GCTP_291106_015 10 80			292	0.004	à-Phellandrene	0							
GCTP_291106_015 13 82			2082	0.032	Cyclohexene, 1-methyl-4-(1-methylethylidene)-	1							
GCTP_291106_015 17 90			626	0.010	3-Carene	1							
GCTP_291106_015 18 12 GCTP 291106 015 19 12			761	0.012	Bicyclo[4.1.0]hept-3-ene, 3,7,7-trimethyl-, (1S)- 2H-Pyran, tetrahydro-4-methyl-2-(2-methyl-1-prope	0							
GCTP_291106_015 20 13			171	0.003	9-Ethylbicyclo(3.3.1)nonan-9-ol	0							
GCTP_291106_015 22 15			294	0.004	Acetic acid, phenylmethyl ester	0							
GCTP_291106_015 26 18 GCTP_291106_015 27 19			3567	0.054	Bicyclo[4.1.0]heptane, 3,7,7-trimethyl-, [1S-(1à,3á,6 3-Carene	. 1							
OCTP_291106_015 2/ 19 OCTP_291106_015 28 20		-	1219	0.028	Bicyclo[4.1.0]heptane, 3,7,7-trimethyl-	1							
GCTP_291106_015 30 21			367	0.006	Cyclohexene, 1-methyl-4-(1-methylethylidene)-	0							
GCTP_291106_015 31 22			653	0.010	Cyclohexene, 4-ethenyl-4-methyl-3-(1-methylethen	0							
GCTP_291106_015 32 23 GCTP_291106_015 33 24			59 1336	0.001	2,4-Quinolinediol Copeene	0							
	12.2001	1	1000	0.010		1 .	-	-					
CTP_291106_014													
		Relative Retention Time			Compound Name	Saturated Peaks	Delta RT	Delta Scan	Abundance Ratio	QC Linit (%)	QC Pass		
GCTP_291106_014 2 9			191	0.003	Perfluoro(2-methylpentane)	0		-					
GCTP_291106_014 3 14 GCTP_291106_014 7 713			321 48	0.005	Perfluorotributylamine Cyclopentadiene, 2,5,5-trimethyl-	0							
GCTP_291106_014 8 860	6.9004		153	0.002	(+)-4-Carene	0							
GCTP_291106_014 12 935			3352	0.049	Eucalyptol	1							
GCTP_291106_014 13 105 GCTP_291106_014 15 111			280	0.004	1,4-Cyclohexadiene, 1-methyl-4-(1-methylethyl)- 1,4-Cyclohexadiene, 1-methyl-4-(1-methylethyl)-	0							
GCTP_291106_014 15 111 GCTP_291106_014 16 151			6	0.000	3-Buten-2-one, 4-(diethylamino)-4-(dimethylamino)-	0				<u> </u>			
GCTP_291106_014 17 151	2 9.0750		121	0.002	2,5-Pyrrolidinedione, 3-(1-chloroethyl)-4-methyl-	0							
GCTP_291106_014 21 152			558	0.008	6-Methyl-cyclodec-5-enol	0							
GCTP_291106_014 22 152 GCTP_291106_014 23 153			20	0.000	1H-Azepine, 2,3,4,5,6,7-hexahydro-2-octylimino- Cyclohexane, 1-methyl-3-propyl-	0	-	-			\vdash		
GCTP_291106_014 24 155			1605	0.023	2-Cyclopenten-1-one, 2-(2-butenyl)-3-methyl-, (Z)-	1							
GCTP_291106_014 26 155			2280	0.033	2-Cyclopenten-1-one, 2-(2-butenyl)-3-methyl-, (Z)-	1							
GCTP_291106_014 29 157			1403	0.020	Bicyclo[4.1.0]heptane, 3,7,7-trimethyl-, [1S-(1à,3á,6	1							
GCTP_291106_014 30 157 GCTP_291106_014 31 160			967	0.014	Cyclohexene, 1,4,8,8-tetramethyl- Phenol, 2-cyclohexyl-4-methyl-	1							
GCTP_291106_014 31 100			5	0.000	4-Hydroxy-2-hydroxymethyl-8-methylpyrimidine	0							

Figure 6. ChromaLynx XS Compare interactive browser showing the unique components within each sample of premix and peppermint essential oils.

Conclusion

- ChromaLynx XS streamlines the workflow within the investigative laboratory by reducing the time spent on the laborious manual tasks of locating and identifying chromatographic peaks.
- There is a reduced risk of errors, since all of the information is stored within a single results browser file – eliminating the need for endless printouts of background subtracted mass spectra and library search results from different programs.
- The ability to automatically compare samples saves time and reduces errors by providing comparative information in an easy-to-view and rapid manner.

ChromaLynx XS Software offers:

- The rapid detection, identification, and semi-quantitative determination of all components in complex mixtures.

- The combination of non-targeted component detection with a library search to facilitate identification.

Featured Products

ACQUITY UPLC System <https://www.waters.com/514207> ChromaLynx <https://www.waters.com/513759> MassLynx MS Software <https://www.waters.com/513662>

720002643, July 2008

 \wedge

©2019 Waters Corporation. All Rights Reserved.

使用条款 隐私策略 商标 招聘 法律和隐私声明 危险化学品生产经营许可证 Cookie Cookie 设置

沪ICP备06003546号-2 京公网安备 31011502007476号