Waters™

アプリケーションノート

Carbamates in Fruits and Vegetables

Waters Corporation

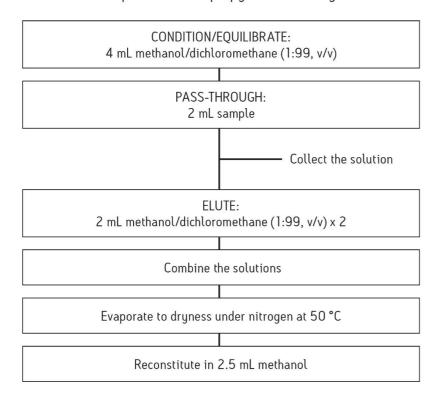
This is an Application Brief and does not contain a detailed Experimental section.

Abstract

Carbamates have been identified as a health risk. They affect the nervous system by reducing the ability of cholinesterase, an enzyme, to function properly in regulating the neurotransmitter acetylcholine.

Introduction

Carbamates have been identified as a health risk. They affect the nervous system by reducing the ability of cholinesterase, an enzyme, to function properly in regulating the neurotransmitter acetylcholine.


Experimental

Pre-treatment

- 1. Add 50 mL of acetonitrile to 25 g of sample. Homogenize for 2 minutes and filter.
- 2. Collect 40-50 mL of filtrate into a flask containing 5-7 g sodium chloride.
- 3. Shake vigorously for 1 minute. Leave to stand at room temperature.
- 4. Take 10 mL aliquot from the acetonitrile layer and evaporate sample to dryness (80 °C under nitrogen or air).
- 5. Reconstitute with 2 mL methanol/dichloromethane (1:99, v/v).

SPE Procedure

Sep-Pak® Aminopropyl 6 cc/500 mg

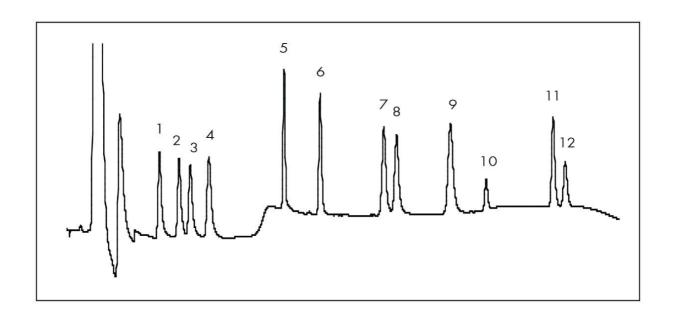
LC Conditions

System:	Alliance HPLC 2695
Column:	Carbamate Analysis Column, 3.9 x 150 mm
Flow rate:	1.5 mL/min
Mobile phase A:	Water
Mobile phase B:	Methanol
Mobile phase C:	Acetonitrile
Sample:	10 ng of each analyte on column
Injection volume:	400 μL

Post column addition: OPA*/NaOH @ 0.5 mL/min

Detector: 2475 Multi Wavelength Fluorescence Detector

Excitation wavelength: 339 nm


Emission wavelength: 445 nm

*OPA: Orthophthaldehyde

Gradient:

Time (min)	A%	В%	C%
0.00	88	12	0
5.30	88	12	0
5.40	68	16	16
14.00	68	16	16
16.10	50	25	25
20.00	50	25	25
22.00	88	12	0
30.00	88	12	0

Results and Discussion

 $Chromatogram\ of\ aldicarb\ standards.$

Peak	Analyte	400 μL
1	Aldicarb Sulfoxide	3.77
2	Aldicarb Sulfone	4.66
3	Oxamyl	5.17
4	Methomyl	6.03
5	3-Hydroxycarbofuran	9.83
6 7	Aldicarb	11.46
7	Propoxur	14.35
8	Carbofuran	14.94
9	Carbaryl	17.37
10	1-Naphthol	18.99
11	Methiocarb	22.02
12	BDMC	22.56

Expected retention times for aldicarb standards.

References

1. Ministry of Agriculture, China (NY/T 761.1 – 2004 and NY/T761.3 – 2004).

Featured Products

Alliance HPLC System https://www.waters.com/534293

720002598, April 2008

© 2021 Waters Corporation. All Rights Reserved.