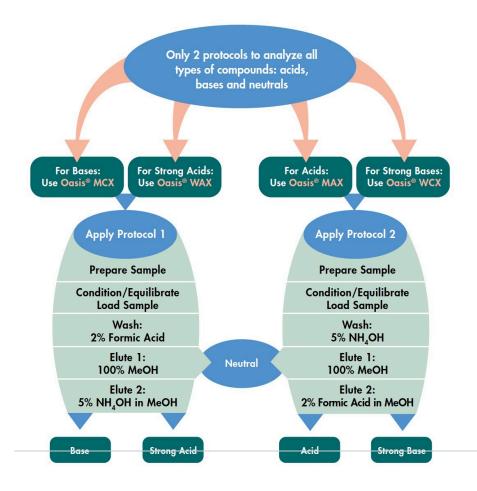


Oasis 2x4 Method: Proof of Concept

Waters Corporation

This is an Application Brief and does not contain a detailed Experimental section.

Abstract


This application brief highlights Oasis 2x4 Method which is a viable approach to SPE sorbent and protocol selection.

Introduction

In order to prove that the Oasis 2x4 Method is a viable approach to SPE sorbent and protocol selection, a group of representative small molecules was spiked into rat plasma. The molecules include a base, a quaternary ammonium salt, a neutral, an acid and a strong acid. The spiked plasma samples were then extracted following the Oasis 2x4 Method. All molecules elute in the correct Elute 1 or Elute 2 fractions according to what theory predicted, proving that the method is viable.

Follow the simple steps outlined in this flow chart to achieve high recoveries and the cleanest extracts:

- · Characterize your analyte [Neutral, Acid or Base, pKa].
- · Select one of the four Oasis sorbents.
- · Apply the indicated Protocol [1 or 2].
- · Determine SPE recoveries by LC analysis.

Experimental

10 mg Oasis 96-well Plates

Protocol 1

Condition:	500 μL MeOH
Equilibrate:	500 μL H ₂ O
Load:	500 μL sample (250 μL plasma diluted 1:1 with 4% $H_3 PO_4$ in $H_2 O)$
Wash 1:	500 μL 2% HCOOH in H_2O
Elution 1:	2 x 125 μL MeOH
Elution 2:	2 x 125 μL 5% NH_4OH in MeOH
Dilution:	250 μL water
Protocol 2	

Elution 1:	2 x 125 μL MeOH
Wash 1:	5% NH ₄ OH in H ₂ O
Load:	500 μL sample (250 μL plasma diluted 1:1 with 4% $H_3 PO_4$ in $H_2 O)$
Equilibrate:	500 μL H ₂ O
Condition:	500 μL MeOH

Elution 2:	$2 \ x \ 125 \ \mu L \ 2\%$ HCOOH in MeOH
Dilution:	5% NH ₄ OH in H ₂ O (To neutralize acid for high pH LC)
Column:	XBridge C ₁₈ 2.1 x 20 mm IS, 3.5 μm
Mobile Phase A:	10 mM NH ₄ HCO ₃ , pH 10
Mobile Phase B:	10 mM NH4H
Injection Volume:	10.0 μ L
Column Temperature:	Ambient
Detection:	UV @ 254 nm (Prednisone)
Instrumentation:	2777 Sample Manager, 1525µ Binary HPLC Pump, Quattro Premier and 2996 PDA

Gradient

Time (min)	Profile
	%A
0	95
3.0	5
4.8	5
5.0	95

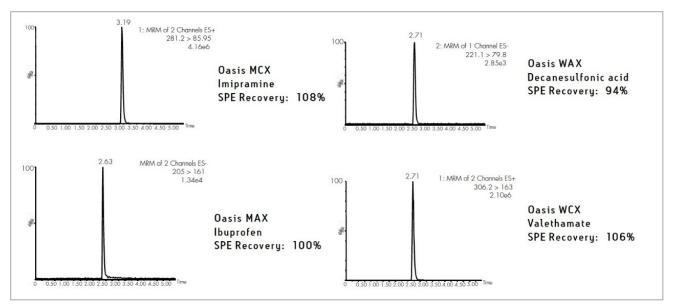
Time (min)	Profile
7.0	95
Quattro Premier	
Capillary:	3.4 kV
Source Temp.:	120 °C
Desolvation Temp.:	350 °C
Cone Gas Flow:	50 L /Hr
Desolvation Gas Flow:	700 L /Hr
Collision Cell Pressure:	2.59e ⁻³ mbar
MRM Transitions:	Imipramine 281.2 > 85.95 ESI+
	Decanesulfonic Acid 220.9 > 79.7 ESI -
	lbuprofen 205.2 > 161 ESI -
	Valethamate 306.3 > 162.8 ESI+

Results and Discussion

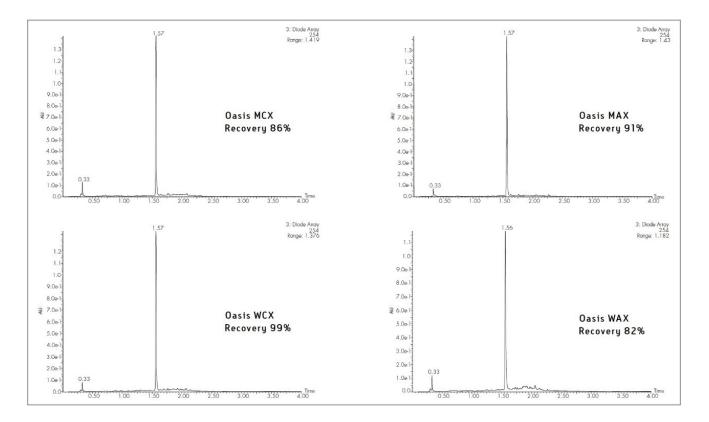
Imipramine (B) pKa = 9.4 100 ng/mL

Prednisone (N) 20 µg/mL

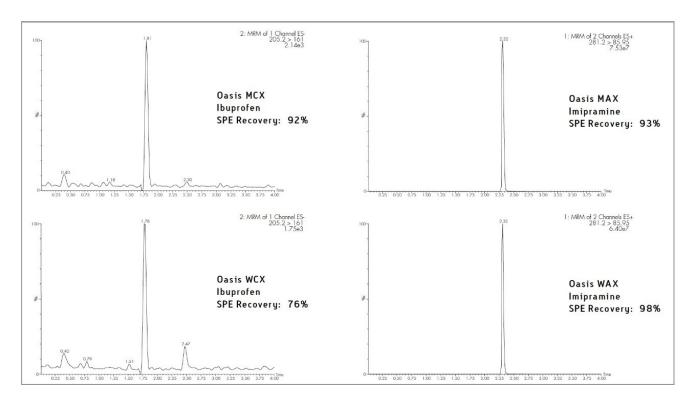
Valethamate (QA) pKa >12 100 ng/mL


0 \$`0- Na⁺

Decanesulfonic Acid (SA) pKa <0.5 200 ng/mL


OH

lbuprofen (A) pKa = 5.2 100 ng/mL


Elute 2, Primary Analyte Data

Prednisone SPE Recovery Data

Elute 1, Counter Analyte Data

Featured Products

<u>2998 Photodiode Array (PDA) Detector < https://www.waters.com/1001362></u>

WA60090, June 2007

 \wedge

© 2021 Waters Corporation. All Rights Reserved.