Waters™

應用手冊

Empower 2 Method Validation Manager Software: Tool for Rapid Method Validation

Daniel S. Root, Andrew J. Aubin

Waters Corporation

Abstract

Empower 2 Method Validation Manager Software effectively streamlines the validation process and integrates smoothly into the validation workflow of the compliant laboratory. To illustrate the straightforward operation and comprehensive functionality of MVM, a basic assay validation of the drug product acetaminophen is summarized. Multiple screenshots from MVM are presented with the validation results to help demonstrate the application of this software to the validation process.

Benefits

- · Regulatory compliance
- · Straight-forward validation troubleshooting
- · Data traceability
- · Reduction of supervisory review
- · Validation consistency

Introduction

Within the compliant laboratory, the validation of analytical methods is a fact of life. Regulatory agencies must have documented evidence that the analytical methods employed by a laboratory yield accurate and reliable results. The laboratories, utilizing advanced planning and good scientific judgment, rely on validation as a means of assuring confidence in the results generated from their analytical methods. From both perspectives, there is no argument that analytical method validation is an important process and a permanent aspect of compliant laboratory operation.

Method validation is a demanding activity. It requires a large investment in personnel, materials, instruments, supervision, and, most of all, time. Some of the more time-consuming aspects of validation involve the creation of validation protocols and sample lists, tracking of the workflow from protocol to final reporting, the performance of calculations, and the intense need to organize and manage raw and processed data. The potential for errors in the many steps of the validation process is large and the time delay when errors occur can be costly.

Waters Empower 2 Method Validation Manager (MVM) Software, coupled with the Waters ACQUITY UPLC System, can dramatically address these timeconsuming elements of analytical method validation. The advantages of using the ACQUITY UPLC System have been reported previously. MVM is designed to streamline the set-up, execution, calculation, and reporting of a method validation. It provides easy data tracking and complete organization of validation data and results monitored by the built-in oversight of automated error checking. MVM is a business-critical software that reduces the time and costs required to perform chromatographic method validation by as much as 80%. Because MVM allows the entire chromatographic method validation process to be efficiently performed within Empower 2, fewer software applications need be deployed, validated, and maintained. Software training and support is also minimized. When less software is required, the software that is business-essential can be deployed more quickly and efficiently.

In addition, Method Validation Manager allows you to be fully compliant with governmental regulations by providing data security, a full set of user privileges, audit trails, and automatic data documentation; providing you with the necessary information and complete data traceability required for final reports and to pass audits and data reviews.

To illustrate the straightforward operation and comprehensive functionality of MVM, a basic assay validation of the drug product acetaminophen will be summarized. Multiple screenshots from MVM are presented with the validation results to help demonstrate the application of this software to the validation process.

Experimental

Materials

Acetaminophen RS was purchased from Sigma-Aldrich Co. (St. Louis, MO). Methanol was acquired from Fisher (Fair Lawn, NJ). Water was purified with a MilliQ Gradient A10 System (Millipore, Billerica, MA).

UPLC conditions

The assay was performed on a Waters ACQUITY UPLC System consisting of a Binary Solvent Manager (BSM), Sample Manager (SM), and Tunable UV Detector (TUV). A Waters ACQUITY UPLC BEH C₁₈, 1.7 μ m, 2.1 X 50 mm Column was selected for the separation. All instruments were controlled, and data were collected and analyzed, using Empower 2 Method Validation Manager Software.

Assay conditions

Mobile phase:	90:10
	water/methanol,
	mixed by pump
Flow:	0.65 mL/min
Temperature:	40 °C
Injection volume:	1.0 μL
Wavelength:	243 nm
wavelength	243 1111
Runtime:	2 min
Retention time:	0.7 min

Solution preparation

The acetaminophen working standard was made from a 1:9 dilution of a 0.1 mg/mL acetaminophen stock standard. 10 mg of acetaminophen RS was weighed accurately into a 100 mL volumetric flask, diluted to mark, and mixed with mobile phase. A 1.0 mL aliquot was then transferred to a 10 mL volumetric flask, diluted to mark, and mixed with mobile phase. The final concentration of the working standard was 0.01 mg/mL acetaminophen RS.

Acetaminophen sample preparation

Sample preparations for this method were made using the following procedure:

Weigh and finely powder at least 20 tablets. Transfer an accurately weighed portion, equivalent to about 100 mg of acetaminophen, to a 200 mL volumetric flask. Add approximately 100 mL of mobile phase and shake the solution for 10 minutes, then sonicate for 5 minutes. Fill the flask to mark with mobile phase.

Transfer a 5.0 mL aliquot of the above solution to a 250 mL volumetric flask, dilute to mark with mobile phase, and mix. The final concentration of this preparation should be approximately 0.01 mg/ mL acetaminophen.

Method system suitability criteria

The method system suitability criteria are listed in Table 1.

Parameter	Acceptance Criterion
%RSD RT min	≤ 1.0%
%RSD area acetaminophen in std	≤ 2.0%
USP tailing	≤ 1.5%
USP plates	≥ 1000

Table 1. Method suitability criteria.

Acetaminophen analysis with the ACQUITY UPLC System is shown in Figure 1.

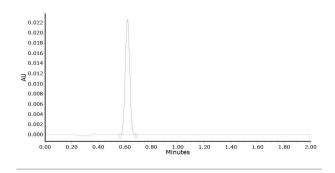


Figure 1. Analysis of acetaminophen.

Validation protocol and execution

The elements of the written validation protocol for this method were easily transferred into the validation protocol method template of MVM (Figure 2). The following validation tests were performed in this study:

- · Robustness (for three factors)
- · Repeatability
- · Intermediate precision (different analyst)
- · Linearity
- · Accuracy
- · Solution stability (24 hours)

	lehod Classification Compound Type: Drug Product natytical Method Type: Acray Development Protocol Comments:	Method/Study Approvals Validation Protocol Approvat		
	lidation Tests System Precision Approvals/Sign Offs lidation Tests			
60		Test Description	Required	Test Status
	Robustness	Robustness 1. 4 factors	R	Sample Sets Incomplete
	Repeatability	Repestability 1	P	Sample Sets Incomplete
3	Linearity	Linearity 1	P	Sample Sets Incomplete
4	Accuracy	Accuracy 1	2	Sample Sets Incomplete
5	Intermediate Precision	second analyst, different day	R I	Sample Sets incomplete
8	Stability	Stability 1 - 24 hour	P	Sample Sets Incomplete
Da	ta Attached to Selected Test			
63	Sampi	e Set Method		SSM Status
1	robust_flow_temp_pctorg1			×
1				
T				

Figure 2. The written protocol can be easily transferred to Empower Method Validation Manager.

Individual tests and their associated acceptance criteria were configured, as shown in Figures 3 and 4.

Accuracy Parameters	
Acquisition Processing and	Acceptance Criteria
	teria: Exact Preparations/Levet 3 Preparations/Preparation: 1 Injections: 3
6	Levels
1	80%
	100%
3	120%
_	
-	
E	
	OK. Cancel Help

Complete sample set methods were constructed and then saved as templates within the validation

protocol method (Figure 5).

nuisi	tion Pr	ocessing an	d Acceptance (Criteri	al						
		-									
c		Turne Calle									
	nponent	Componer	ct row to set Ac	cepta		na ssessed F	21			Significance	
6			птуре				Iel	a		Significance	Level
1	Main Co	mponent		%	Recover	У			0.05		
				+							
Acc	ceptance	Criteria per	Component Typ	e							
6	Field	і Туре	Field Name		Target	% Range	е	Lower Limi	t (LL)	Upper Limit (UL)	Fault on Targe
1	Accura	cy Result	% Recovery M	ean	100.00				95.00	105.00	Г
П											
H						<u> </u>					
H					-	<u> </u>	-				
Н							-				
H							_				
Acc	ceptance	Criteria per	Component Typ	e pe	r Level						
69	Level	Field Type	Field Name	Te	arget 9	% Range	L	ower Limit (LL)	Upper Limit (UL)	Fault on Targe
H				+							
H				+							
H				+			-		-		
Н		-	-	+			_		_		
H			_	+			_		_		
			_								
			_	-			-				
_				_							
									01	Cance	I Help

Figure 5. Sample set method.

Since the validation protocol called for method suitability parameters to be met by each analysis, system precision requirements were also configured (Figure 6).

E		w Belo <u>≫⊕</u> <u>%</u> 75			al								
0	Plater/vel	SampleName	N V01 (uL)	# cf His	Function	Method Set / Report Method	Pun Time (Minutes)	Level	Sample Preparation	Next Inj. Delay (Misutes)	enelyst	Experiment Name	Robustnes
	1:0,1	best inj.	1.0	1	Inject Samples	aceta_robust1	2.00	0%		0.00	_		Г
0	1:8,2	sys prec. 100% dd	1.0	6	Inject Standards	aceta_robust1	2.00	100%		0.00			Г
	1:0,3	100% prep	1.0	1	Inject Samples	aceta_robust1	2.00	100%	Preparation 1	0.00		Experiment 1	P
	1:0,4	100% prep	1.0	1	Inject Samples	scets_robust1	2.00	100%	Preparation 2	0.00		Experiment 1	R
5	1:8,5	100% prep	1.0	1	Inject Samples	aceta_robust1	2.00	100%	Preparation 3	0.00		Experiment 1	R
	1:0,5	100% prep	1.0	1	Inject Samples	aceta_robust1	2.00	100%	Preparation 4	0.00		Experiment 1	P
	1:0,7	100% prep	1.0	1	Inject Samples	aceta_robust1	2.00	100%	Preparation 5	0.00		Experiment 1	R
	1:0,0	100% prep	1.0	1	Inject Samples	aceta_robust1	2.00	100%	Preparation 6	0.00		Experiment 1	2
				1	Clear Calibration	aceta_robust1							
0					Calibrate	aceta_robust1							
					Ouarttate	acets_robust1							
2					Equilitrate	scets robust2	10.00			0.00			
1	1.8.1	best ini.	1.0	1	Inject Sangles	aceta robust2	2.00	0%		0.00			F
4	1:8,2	ret. ebd. 100%	1.0	6	Inject Standards	acets_robust2	2.00	100%		0.00	-	Experiment 3	Г
5	1:8.3	100% prep	1.0	1	Inject Samples	aceta.robust2	2.00	100%	Preparation 1	0.00		Experiment 3	1
15	1:0.4	100% prep	1.0	1	Inject Samples	scets robust2	2.00	100%	Preparation 2	0.00	-	Experiment 3	P
7	1:8.5	100% prep	1.0		Inject Samples	acets_robust2	2.00	100%	Preparation 3	0.00	-	Experiment 2	R
0	1:8.6	100% prep	1.0		Inject Sangles	aceta robust2	2.00	100%	Preparation 4	0.00	-	Experiment 3	8
9	1:87	100% prep	1.0		Riect Sangles	aceta robust2		100%	Preparation 5	0.00	-	Experiment 3	2
90	1:8.0	100% prep	1.0		Inject Sanging	aceta robust2		100%	Preparation 6	0.00	-	Experiment 2	R
11				-	Clear Colibration	acets robust2							
2					Calibrate	aceta robust2							
13					Quantitate	aceta robust2				_	-		
14					Equilitrate	aceta_robust3	10.00			0.00	-		
15	1:8.1	best ini.	1.0	- 1	Inject Sangles	aceta robust3	2.00	0%		0.00	_		E.
15	1:82	ret. std. 100%	1.0		inject Standards	scets_robust3		100%	-	0.00	-	Experiment 2	F
17	1:8,3	100% prep	1.0		Riect Sangles	aceta_robust3		100%	Preparation 1	0.00	-	Experiment 2	R
18	1:0.4	100% prep	1.0		Intect Sansies	aceta robust3		100%	Preparation 2	0.00	-	Experiment 2	2
9	1:85	100% prep	1.0		Inject Samples	Etudor etude		100%	Preparation 3	0.00	-	Experiment 2	R
10	1.8.6	100% prep	1.0		Inject Sangles	aceta robust3		100%	Presention 4	0.00	-	Experiment 2	R
1	1.8.7	100% prep	1.0		Ried Sanaka	aceta robust3	2.00	100%	Preparation 5	0.00	-	Experiment 2	2
12	1:8.0	100% prep	1.0		Inject Samples	aceta robust3		100%	Preparation 6	0.00	-	Experiment 2	
13		- and party			Clear Collivation	aceta_robust3	2.00	100.0	Treparatori u	0.00		e-period to a	
14					Celbrate	acets robust3							
15			-		Quantitate	aceta_robust3	_			_			
						and show	12.00			4.00			

Figure 6. System precision parameters. In this protocol, the % RSD of peak area must be no more than 2%.

During the process of test configuration and sample set method construction, errors were automatically caught by MVM, as indicated by a red X in the validation protocol window. Using the update status button and responding to error messages from the message center effectively guides all troubleshooting activity (Figure 7).

efind Classification Compound Type: Drug Product algifical Method Type: Assay Development Phase: Development Protocol Comments:			- Method/Study Validation Pro	Approvals tocol Approval:						
idation Tests System Precision Approvals/Sign Of Acquisition Parameters			id Acceptance C							
Acquisition Parameters				ixena lo set Acceptano	e Criteria					
System Precision Required	60		Component T	/pe		Assess	red Field		Significance Le	ivel
ior ai sample sets	1	Main Com	ponent		Area			0.05		
Criteria:		Main Com	ponent		Retention	Tine		0.05		
Exact 💌		Main Com	ponent		USP Tellin	9		0.05		
	4	Main Com	ponent		USP Plate	Count		0.05		
Vials/Sample Set: 1 📑	Acc	eptance C	Citeria per Compo	ment Type						
Injections/Viat 6	60		eld Type	Field No	rtie	Target	% Range	Lower Linit (U) Upper Limit (UL)	Foult on Targe
	1	System Pr	recision Result	Assessed Fie	d % RSD	1			2.000000	Г
Injections: 6										
	Acc	eptance C	Criteria per Comp	anent Type per L	evel					
	63	Level	Field Type	Field Name	Target	% Ra	nge Lov	ver Linit (LL)	Upper Linit (UL)	Fault on Target

720002401en-f6

Method Classification Compound Typ Analytical Method Typ Development Phas Protocol Comment	: Development	Method/Study Approvals Validation Protocol Appro		
alidation Tests	n Precision Approvals/Sign (
8	Test Name	Test Description	Required	Test Status
Robustness		Robustness 1. 4 factors	V	Sample Sets Incomplete
Repeatability		Repeatability 1	2	Sample Sets Incomplete
Linearity		Linearity 1	V	SS Methods incomplete
Accuracy		Accuracy 1	v	SS Methods Incomplete
Intermediate Precisi	on.	second analyst, different day	V	Sample Sets Incomplete
Stability		Stability 1 - 24 hour	V	Sample Sets Incomplete
acc_lin_Spt_assay	Sample Set			SSM Status
		The red X indicates an set mathod that is income validation test configurat	sistent with the	
	ssage Center			
IFM-ENPSRV-01 - Me Yew Heb				
Yew Help + + Proje		austness 1, 4 factors: Either the Robustness test field is	Message not checked or the level does	not match the level specified in the conference or

Figure 7. Linearity sample set method error caught by Empower 2 MVM Software. The message center indicated a problem, which was easily resolved. MVM ensured that all sample set methods were consistent with their respective test configurations. An earlier error for a robustness test configuration is also visible.

The validation protocol method was saved within a validation template project. Next, a validation working project was started and a new study was initiated based on the validation protocol method template.

The validation manager window lists the test configurations and acceptance criteria for the validation study. Additional functionality includes indicators that show test status and required approval (Figure 8). Since complete sample set methods are contained in the validation protocol method, the study can now be executed. Standards and samples were prepared then analyzed on the ACQUITY UPLC System as the previously established sample set methods.

2			<u>ا ا ا</u>			Con the second) 🛞 段			all the second se	
	ethod Classification Compound Type: Drug Product nalytical Method Type: Assay Development Phase: Development Protocol Comments:			Validatio Valid	Study App n Protocol ation Proto Dverall Stu ation Study	col M dy S	oroval: Name: acetamin Status: Study Inc				
	idation Tests System Precision Approv. idation Tests Test Name		Test Description		Required	_	Test Statu		VR Stah		ign Off(s)
1	Robustness		ness 1. 3 factors		Trequirec	-	Sample Sets Inco		VIN State	15 11 31	giron(s)
2	Repeatability	Repeat		°	14	-	Sample Sets Inco				
3	Linearity	Linearit		-	14	_	Sample Sets Inco Sample Sets Inco				
4	Accuracy	Accura	600	-	14	-	Sample Sets Inco				
5	Intermediate Precision	-	analyst, differer	t day	14	-	Sample Sets Inco				
6	Stabilty	-	1 - 24 hour	r ouy	1	-	Sample Sets Inco				
a	a Attached to Selected Test										
D	Sample Set Method	SSM Id	SSM Status	SSM Ap	proval S	SId	SS Status	SS Approval	RS Id	RS Status	RS Sign C
1	robust_flow_temp_pctorg		~								
							t method that w n test configurat				
1											

Figure 8. The green check mark in this validation manager window indicates that the sample set method is consistent with the user-configured test criteria.

Results and Discussion

Robustness

Robustness was evaluated using a 1/2 fractional factorial experimental design. The parameters assessed were flow rate, percent organic in the mobile phase, and column temperature (Table 2). Because the sample preparation procedure of this method is direct from the United States Pharmacopeia , only selected instrumental parameters were evaluated. The acceptance criteria for the test were:

1. The amount of acetaminophen determined must fall within 5% of the target value.

The %RSD of the amount must be no more than
 3%.

A parameter that fails these criteria will need to be tightly controlled when performing the assay.

Experiment	Column temperature °C	%Organic	Flow rate mL/min
1	37	8	0.750
2	43	8	0.550
3	37	12	0.550
4	43	12	0.750

Table 2. Experimental design of robustness from MVM.

The results of the robustness testing indicate that all three factors – percent organic, flow rate, and column temperature – had statistically significant effects on the determination of acetaminophen by this method. Referring to the effects plot in the validation result review window in Figure 9, varying the percent organic by $\pm 2\%$, the temperature by ± 3 °C, and the flow rate by ± 0.1 mL/min, produced a 1%, 5%, and 10% effect on the assayed acetaminophen amount respectively.

<u>ne se se ne </u>															
Roburner: Professional Conservation Professional Contents Text Decoders In Distances Text Decoders Text Decoders	1		C- D- A- -0.0011	-0.0010			0008		007 - 4.000 Ettects	j	, interest of the second se	4.004	4.0005	-0.0002	
ш	I	D-Ac	1	Variance Plot.	(.16	alf Normal Prob	atingP	tot 🖌 Tre	and Plot Z		1		1		
	60	Visible	Validation Result Id	Test Descrip	tion	Component	Туре	Compos	nent Proces	sing Codes	Feults	Experimen	Is Points.Experiment	Group By	ľ
	1	V	5001	Robustness 1.	3 190	tors Main Comp	anent	restamin	repiter MV28 MV1	6 MV69 MV	78 🔽		4 8	Experiment Non-	•
	E				-										-
	<	D-A	nects Plat 🖌	Variance Piot	(Hi	alf Normal Prob	ability P	tot & Tre	and Plot A Robust	ness Resa	at (Testi	stects & A	NONA & Data & Pea	kResult /	
	60	Factor	Source	55	0F	MS	F.F	latio	F-Ratio Reference	p-Value	Variance C	orponent	% Variance Compone	E Variance Com	po
	1	٨	pct_org_mp	3.824533e-007		3.824533e-007	2190	800933	6.607891	0.0000000		0.000000	1.58020	4	0
		в	col_temp	6.045435e-006	1	6.048435e-006		634652	6.607894			0.000001	19,51913		0
	3	с	Sow_rele	2.430504e-005	1	2.430604e-005	139228	100284	6.607891	0.000000		0.000002	78.60954	8	0
								_			-			-	_

Figure 9. Validation test result review window. If the drug name appears in bold, red type, this indicates an out of specification result. Using the tabs of the review screen, the exact nature of the out-ofspecification result can be quickly determined.

In this case, robustness was evaluated for only the primary effects of the three factors with no consideration given to interaction. However, additional factors and the assessment of possible interactions between them, can all be performed easily and the results analyzed with MVM's powerful statistical techniques with a minimum of effort on the part of the validation analyst.

Repeatability

Repeatability (intra-assay precision) was tested by analyzing six individual sample preparations according to method conditions. The resulting 0.13% RSD for amount easily fell within the acceptance criterion of %RSD ≤2.0%, demonstrating that this assay is highly repeatable (Figure 10).

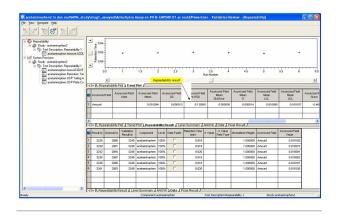


Figure 10. Repeatability test in the validation result review window.

This repeatability result was used in the intermediate precision determination and as the initial time point for the solution stability test. MVM automatically consolidates test result calculations from separate sample set methods.

Intermediate precision

Intermediate precision (ruggedness, inter-assay precision) was evaluated for a different analyst, on a different day, on a different instrument and column. Six individual sample preparations were analyzed according to method conditions. Results were compared with the repeatability determination. A difference of no more than 3.0% in the amount of acetaminophen between the two analysts was an acceptable result. The resulting 2.6% difference demonstrates the ruggedness of this assay (Figure 11).

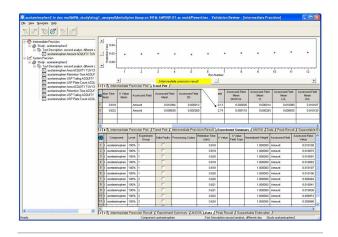


Figure 11. Intermediate precision result shown in the validation result review window.

Accuracy

Accuracy was assessed by analyzing triplicate preparations of mobile phase spiked with acetaminophen RS at 80, 90, 100, 110, and 120% of the target concentration of the method (0.01 mg/mL). The recovery result from the spiked acetaminophen ranged from 99 to 101% and fell within the 95 to 105% acceptance range. The method is very accurate for the range tested (Figure 12).

5 6° 88 6° 87 10																
Accusor Software actaminopten2 Software actaminopten2 Software Accusor 1 Software Accusor 1		110.00 Lavoo 100.00 yt 90.00	-1	<u>م</u>	,		•-				5 11					
 acetaminophen Retention Til acetaminophen USP Tailing 	n		75	80	9	5	10	95	Lev	o 10	15 11	3 11	•	120	125	
acetaminophen USP Plate C			Plot & Trend						-	1						
		X Value	et Lower Rang	×	Value	% Recovery Mean	% Recov	ry % Rec % 8	covery RSD	% Recovery Mean Std Error	% Recovery Mean Cl	% Recovery Mean LCL	% Rec Ma	an 7,3	Necoverγ Skew	
	1		0.00800	0	0.012000	100.24	0.514	120 0.	512885	0.132745	0.284710	99.96		100.53	0.861692	1
	Ħ			-	_			-	-				-	-		
		Validation	ry Plot & Trend	_	1	1	lo.	ection Time	1	X Value				× 0		
		Validation Result id	Component	Level	Data Foult	1	lo.	erilion Tine (min)	X Value	X Volue Field Type	Normalized Wei			% Recovery		
	1	Validation Result Id S051	Component acetaminophen	Level 100%	Data Fault	1	lo.	ention Time (min) 0.619	X Value 0.01000	Field Type Amount	Normalized Wei 1.0000	00 0.	009992	39.9	2 -0.0788	
		Validation Result id S051 S051	Component acetaminophen acetaminophen	Level 100%	Data Foult	1	lo.	erition Time (min) 0.619 0.619	X Value 0.01000 0.01000	X Value Field Type Amount Amount	Normalized Wei 1.0000 1.0000	00 0.	009992	99.9. 100.2	2 -0.0788	
	1	Validation Result Id S051	Component acetaminophen	Level 100% 100%	Oata Fout	1	lo.	ention Time (min) 0.619 0.619 0.620	X Value 0.01000 0.01000	X Value Field Type Amount Amount Amount	Normalized Wei 1.0000	00 0 00 0 00 0	009992	99.9 100.2 100.1	2 -0.0788	
	1 2 3	Validation Result id 5051 5051 5051	Component acetaminophen acetaminophen acetaminophen	Level 100% 100% 100% 110%	Dots Fout	1	lo.	ention Time (min) 0.619 0.620 0.620	X Value 0.01000 0.01000	X Value Field Type Amount Amount Amount Amount Amount	Normalized Wei 1.000 1.000 1.000	00 0 00 0 00 0 00 0	009992 010023 010017	99.9 100.2 100.1	2 -0.0788 0.2251 7 0.1748 5 0.4478	
	1 2 3 4	Validation Result kl S051 S051 S051 S051	Component acetaminophen acetaminophen acetaminophen	Level 100% 100% 100% 110%	Dota Foult	1	lo.	ention Time (min) 0.619 0.620 0.620 0.620	X Value 0.01000 0.01000 0.01000 0.01100 0.01100	X Value Field Type Amount Amount Amount Amount Amount Amount	Normalized Wei 1.000 1.000 1.000 1.000	00 D 00 D 00 D 00 D 00 D	009992 010023 010017 011049	99.9 100.2 100.1 100.4	2 -0.0700 0 2251 7 0.1740 5 0.4478 3 0.1346	
	1 2 3 4	Validation Result id 5051 5051 5051 5051	Component acetaminophen acetaminophen acetaminophen acetaminophen	Level 100% 100% 100% 110% 110%	Dots Fout	1	lo.	ention Time (min) 0.619 0.620 0.620 0.620 0.620 0.620	X Value 0.01000 0.01000 0.01000 0.01100 0.01100	X Value Field Type Amount Amount Amount Amount Amount Amount Amount	Normalized Wei 1,000 1,000 1,000 1,000 1,000 1,000	00 0 0 00 0 0 00 0 0 00 0 0 00 0 0	009992 010023 010017 011049 011015	99.9 100.2 100.1 100.4 100.1	2 -0.0788 3 0.2251 7 0.1748 5 0.4478 3 0.13467 5 0.7622	
	1 2 3 4 5 6 7 8	Validation Result id 5051 5051 5051 5051 5051 5051 5051 505	Component acctantinophen acctantinophen acctantinophen acctantinophen acctantinophen acctantinophen acctantinophen	Level 100% 100% 110% 110% 110% 120%	Deta Fout	1	lo.	ention Time (min) 0.619 0.620 0.620 0.620 0.620 0.620 0.620	X Value 0.01000 0.01000 0.01100 0.01100 0.01100 0.01200 0.01200	X Vake Field Type Amount Amount Amount Amount Amount Amount Amount Amount Amount Amount Amount Amount	Normalized Wes 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000	00 0 0 00 0 0 00 0 0 00 0 00 0 00 0 00	009992 010023 010017 011049 011015 011084 012083 012093	99.9 100.2 100.1 100.4 100.1 100.4 100.1 100.7 100.6	2 -0.0708 0 .2251 7 0.1740 5 0.4478 3 0.1346 8 0.7622 0 .6917 7 0.7730	
	3 1 2 3 4 5 5 7 8 9	Validation Result id 5051 5051 5051 5051 5051 5051 5051 505	Component acetaminghen acetaminghen acetaminghen acetaminghen acetaminghen acetaminghen acetaminghen acetaminghen	Level 100% 100% 110% 110% 110% 120% 120%	Deta Fault	1	lo.	erdion Tine (min) 0.819 0.819 0.820 0.820 0.820 0.820 0.820 0.820	X Value 0.01000 0.01000 0.01100 0.01100 0.01100 0.01200 0.01200 0.01200	X Value Field Type Amount Amount Amount Amount Amount Amount Amount Amount Amount Amount Amount Amount Amount	Normalized Wey 1,000	00 0 0 00 0 0 00 0 0 00 0 00 0 00 0 00	009992 010023 010017 011049 011015 011084 012083 012083 012089	99.9 100.2 100.1 100.4 100.1 100.7 100.0 100.7 100.4	2 -0.0780 3 0.2251 7 0.1748 5 0.4478 8 0.1346 8 0.7622 0 0.5917 7 0.7730 9 0.4941 3 0.4941	
	1 2 3 4 5 6 7 8 9 10	Validetion Result id 5051 5051 5051 5051 5051 5051 5051 505	Component acetaminghen acetaminghen acetaminghen acetaminghen acetaminghen acetaminghen acetaminghen acetaminghen	Level 100% 100% 110% 110% 110% 120% 120% 120%	Deta Fault	1	lo.	ertion Tine (min) 0.619 0.620 0.620 0.620 0.620 0.620 0.620 0.620 0.620 0.620	X Value 0.01000 0.01000 0.01100 0.01100 0.01100 0.01200 0.01200 0.01200 0.01200	X Velue Feld Type Anount	Normalized Wey 1,000	00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0	009992 010023 010017 011049 011015 011084 012083 012083 012089 012089	99.9 100.2 100.1 100.4 100.1 100.0 100.0 100.0 100.0 100.7 100.4 100.5	2 -0.0700 0 0.2251 7 0.1740 5 0.4478 0 .13469 0 .13	
	3 1 2 3 4 5 5 7 8 9	Validation Result id 5051 5051 5051 5051 5051 5051 5051 505	Component acetaminghen acetaminghen acetaminghen acetaminghen acetaminghen acetaminghen acetaminghen acetaminghen	Level 100% 100% 110% 110% 110% 120% 120% 80% 80%	Deta Fault	1	lo.	ertion Tine (min) 0.619 0.620 0.620 0.620 0.620 0.620 0.620 0.620 0.620 0.620 0.620	X Value 0.01000 0.01000 0.01100 0.01100 0.01100 0.01200 0.01200 0.01200 0.01200	X Volue Pield Type 0 Amount 0 Amount	Normalized Wey 1,000	00 0 0 00 0 00 0 00 0 00 0 00 0 00 0 0	009992 010023 010017 011049 011015 011084 012083 012083 012089	99.9 100.2 100.1 100.4 100.4 100.7 100.6 100.7 100.4 100.5 100.5	2 -0.0700 0 0.2251 7 0.1740 5 0.4478 0 .13469 0 .13	

Figure 12. Accuracy validation result review window.

Linearity

Linearity was evaluated from the same experiment as the accuracy test. The results were linear with slope = 5.47×10^6 , R² = 0.999, and a y-intercept of -720.3. The method is linear within the range tested (Figure 13).

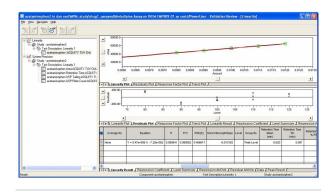


Figure 13. Linearity result shown in the validation result review window.

Stability

Stability was evaluated by the analysis of the repeatability sample preparations (N=6) after 24 hours at room temperature. The repeatability results were used as the time zero condition and were automatically used in the stability data processing. As shown in the validation results, acetaminophen sample preparations are stable for at least 24 hours (Figure 14).

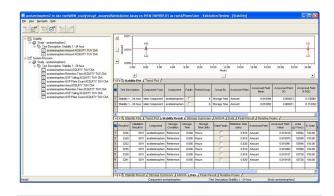


Figure 14. The consolidated results of two separate sample sets are presented in the stability validation test result review window.

Validation summary

The status and final results for each of the validation tests was clearly displayed in the validation manager window. The green checks indicated tests with acceptable validation results, while the yellow triangle flagged robustness test results that fell outside the acceptance range (Figure 15).

2		1	9					0		
Method Classification Compand Type: Drug Podket Angkloal Method Type: Assay Development Phase: Development Photool Comments: Valdaten Tests System Precision Approvab//Sign Offs				Mehod/Study Approvali Valdstoin Polaco Approvali Valdstoin Polaco Approvali Overal Study: Studu:: Study Compilere Valdstein Study: Approvali						
3	dation Tests	Tests Test Name Test Description Required Test Status VR Status VR Ska								
	Robustness	Robur	Iness 1 3 facto		vequareu V	Test Comple		A		VIC SIGN ON(S)
	Repeatability		tability 1		7	Test Comple				
	Linearity	Lineari			2	Test Complete		~		
-	Accuracy	Accur			1	Test Complete		v		
5	Intermediate Precision	secon	d analyst, differe	int day	V	Test Complete		~		
5	Stability	Stabilt	y 1 - 24 hour		4	Test Complete		V		
at	a Attached to Selected Test									
0	Sample Set Method	SSM Id	SSM Status	SSM Approve	I SS Id	SS Status	SS Approval	RS Id	RS Status	RS Sign Off(s)
	intermediate_prec_exp1	3374	~		3436	×		3658	~	
2	repeatability_assay_tablet	2733	~		2734	v		3211	~	
1					\square					

Figure 15. The validation manager window shows that validation is complete.

The method for the assay of acetaminophen was analyzed for robustness, repeatability, intermediate precision, accuracy, linearity, and solution stability. This assay was found to be linear, accurate, repeatable, and to be accurately and precisely performed by more than one analyst. Additionally, samples prepared following the method procedure were documented as stable for 24 hours. From the robustness testing, altering the column temperature and flow rate was found to significantly affect the accuracy and precision of the method. The method will be revised to clearly state the need to control these two factors.

Conclusion

Empower 2 Method Validation Manager Software

effectively streamlines the validation process and integrates smoothly into the validation workflow of the compliant laboratory.

Some of the benefits from the use of MVM are:

- Regulatory compliance: Empower 2 MVM
 Software easily meets all of the regulatory needs of the compliant laboratory.
- Straight-forward validation troubleshooting: The update tool/message center provides an application-directed, time-efficient troubleshooting process, reducing the time required to get the validation back on track.
- Data traceability: Out of specification results are clearly indicated and subsequent investigations are facilitated by the self-contained, completely traceable data management capability of the MVM.
- Reduction of supervisory review: The onus of supervisory review is reduced using MVM, enabling rapid progression in the validation workflow. Potentially error-prone steps such as processing, calculation, and overall data management are all eliminated with the automatic, self-contained design of MVM. The need for any additional third party software packages is also eliminated.
- Validation consistency: The ability to create project and sample set method templates ensures consistency of validation protocols with the guidance documents of the laboratory. This

reduces errors in the execution of the protocols and increases confidence in the data acquired and the results obtained.

MVM not only effectively organizes and manages the performance of a method validation, it also delivers inarguable confidence in its results. Coupling Empower 2 Method Validation Manager Software to the ACQUITY UPLC System provides an unparalleled solution to the validation needs of a laboratory.

Featured Products

Empower 3 Method Validation Manager (MVM) < https://www.waters.com/534328> ACQUITY UPLC System <https://www.waters.com/514207 > ACQUITY UPLC Tunable UV Detector < https://www.waters.com/514228>

720002401, November 2007

©2019 Waters Corporation. All Rights Reserved. 使用條款 隱私權 商標 就業機會 Cookie Cookie偏好設定