Waters™ ^{應用手冊}

Niflumic Acid/Camphorsulfonic Acid Extracted from Rat Plasma

Waters Corporation

This is an Application Brief and does not contain a detailed Experimental section.

Abstract

This application brief demonstrates analysis of niflumic acid/camphor sulfonic acid extracted from rat plasma.

Introduction

The compounds used in this study are - Niflumic Acid and (1S)-Camphor-10-sulfonic acid.

Niflumic Acid - 115% recovery MW 282.2, $C_{13}H_9F_3N_2O_2$

(1S)-Camphor-10-sulfonic acid – 109% recovery MW 232.3, C₁₀H₁₆O₄S

Experimental

Oasis WAX SPE Protocol

Plate: Oasis WAX µElution Plate

Condition:	200 μL MeOH
Equilibrate:	200 μL H ₂ O
Load:	100 μL 1:1 diluted rat plasma, 10 pg/ μL , w/2% H_3 PO_4
Wash 1:	200 μ L 25 mM NH ₄ CH ₂ COOH buffer in H ₂ O, pH 5
Wash 2:	200 μL MeOH
Elute:	50 μL (25 μL x 2) MeOH w/2% NH_4OH
Dilute:	50 μL H ₂ O with 2% HCOOH
Inject:	10 μL
Conditions	
Column:	SunFire C ₁₈ 2.1 x 20 mm <i>IS</i> , 3.5 μm
Part number:	186002531
Mobile phase A:	H ₂ O with 10 mM NH ₄ CH ₃ COOH, pH 5.5
Mobile phase B:	MeOH with 10 mM NH ₄ CH ₃ COOH, pH 5.5
Flow rate:	0.4 mL/min
Injection volume:	10 μL
Sample concentration:	10 pg/μL each analyte
Temperature:	Ambient

Instrument: Waters Alliance 2695

Waters Micromass Quattro micro API

ESI source temp.: 150 °C

Desolvation temp.: 350 °C

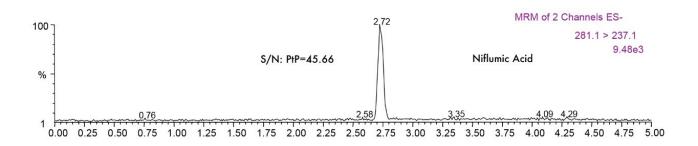
Cone gas flow: 50 L/Hr

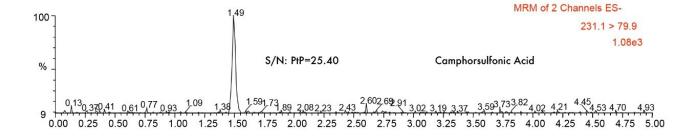
Desolvation gas flow: 600 L/Hr

Collision Cell: 1.23e⁻³ bar (Ar gas)

Compounds MRM Transition

Niflumic Acid m/z 281.1 \rightarrow 237.1


Camphorsulfonic Acid m/z 231.1 \rightarrow 79.9


Gradient

Time	Profile		
(min)	%A	%B	
0.0	95	5	
3.0	5	95	
4.0	5	95	
4.1	95	5	
5.0	95	5	

Results and Discussion

	MRM transition	Cone (V)	CID (eV)
Niflumic acid	m/z 281.1 \rightarrow 237.1	30	17
Camphorsulfonic acid	m/z 231.1 \rightarrow 79.9	45	30

Featured Products

Alliance HPLC System https://www.waters.com/534293

WA41895, May 2005

© 0004 Water Occurred's e All B'alds Barred
© 2021 Waters Corporation. All Rights Reserved.