Waters[™]

应用纪要

Comparing SIR to MRM for the Quantitative Confirmation of Steroid Growth Promoters in Bovine Urine

David Douce, Peter Hancock, Hans A. van Rhijn, Eric van Bennekom

Waters Corporation, RIKILT Wageningen UR

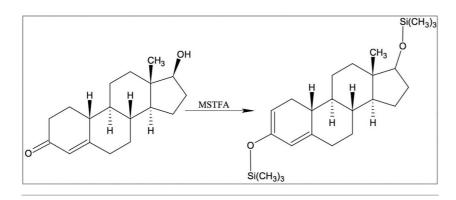
Abstract

As legislation continues to lower the limits of detection (LODs) required for residue quantification and confirmation in food, more specific and sensitive methods of detection are required. This application note describes the use of the Waters Quattro micro GC instrument using electron impact (EI+) ionization to quantify and confirm eight trimethylsilyl (TMS) derivatized steroid growth promoters present in bovine urine extracts.

Benefits

- The use of tandem quadrupole MS/MS shows greater selectivity especially from complex urine extracts (mature bovine)
- TargetLynx provides advanced quantification with a range of automatic quality control checks including a compliance check in accordance with EU requirements for confirmatory analysis of banned substance

Introduction


It is suspected that steroid growth promoters are currently used to speedup the rate of growth of muscle tissue in domestic animals grown for public consumption in many countries. However, the use of growth promoters in animals reared for meat is prohibited in the European Union (EU).¹ EU regulations stipulate that no residual concentration of these compounds should be present at any stage in the production of meat. Therefore, the detection and confirmation of these steroids at any concentration will lead to the condemnation of the produce. In order to effectively monitor the occurrence of these residues the most specific and sensitive methods are required.

Gas chromatography and single quadrupole mass spectrometry, using selected ion recording (SIR), is the favoured method of analysis. Results must satisfy the current EU legislation on confirmation criteria, Commission Decision 2002/657/EC².

These steroids require derivatisation to ensure sufficient volatility to chromatograph through a fused silica capillary column. For example, the following derivatisation of 17α-Nortestosterone with N-Methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA) is required prior to quantitative analysis

(Figure 1). The efficiency of the derivatisation step can sometimes be variable orlow for these compounds. This variable efficiency is often compensated by the use of stable isotope labelled analogues.

Current legislation stipulates four structure-related ions for each analyte with the correct ion ratio must be monitored when using SIR mode. When the analysis requires the unambiguous identification of these compounds at trace concentrations from highly complex matrices difficulties can be encountered. These are often interferences from co-eluting compounds, which appear on the SIR trace making accurate quantification prone to error.

Figure 1. The typical derivatisation process used for the steroid growth promoters.

Multiple reaction monitoring (MRM) is a tandem mass spectrometric technique that allows the monitoring of specific collision induced dissociation (CID) reactions. The nature of these reactions depends on molecular structure as well as mass and, as a result, significant improvements in analytical selectivity may be achieved using this method. Current legislation stipulates that when using MRM mode, monitoring of two structure-related transitions for each analyte suffices for confirmation of identity.

Experimental

The samples were analysed on a Waters Micromass Quattro micro GC (Figure 2) tandem quadrupole mass spectrometer operated in EI+ mode. Both series of SIR and MRM experiments were performed on the Quattro micro GC.

Extraction

2 mL of standard or sample were enzymatically hydrolysed at 37 °C overnight. Next day, after the addition of sodium acetate buffer (0.25 M, pH 4.8), each extract was purified by passing the sample through a C_{18} and a NH₂ cartridge, respectively. Further cleanup was completed using semi-preparative HPLC. The resulting fractions were derivatised with MSTFA++. 17- α -methyltestosterone-delta 9,11 was added as a derivatisation control standard.



Figure 2. Waters Micromass Quattro micro GC.

Derivatisation

Derivatisation was completed by adding excess MSTFA++to each sample and heating to 60 °C for 15 min. All extracts were then reduced to dryness by a dry stream of nitrogen. 40 mL of iso-octane/n-decane (4:1 containing 1.0 ng/mL of the PCB 138 internal standard) was added to each sample.

GC Method

The samples were injected by splitless injection (2 μ L, 250 °C, purge at 30 mL/min after 2.1 min) into a carrier gas of helium at a constant flow rate of 1.0 mL/min delivered from an Agilent 6890 GC with a 7683 autosampler attached. The GC capillary column employed was a RestekRtx-CL Pesticides, 30 m x 0.25 mm i.d., 0.25 μ m. The following temperature ramp rate was used: 130 °C (2 min) to 250 °C (3 min) at 12 °C/min, to 300 °C (8.4 min) at 7.5 °C/min. The total run time was 30 min. The temperature of the interface was held at 275 °C during the chromatographic run.

MS Method

In both SIR and MRM modes, the ion source was operated at 180 °C with an electron energy of 70 eV and a trap current of 100 μ A.

For the SIR experiments, the four selected ions for each analyte and their associated dwell times are listed in Table 1.

Compound	Selected ions (Da)	Dwell time (s)		
PCB-138 (I.S.)	289.8, 359.8	0.1		
17α -Nortestosterone	182.1, 194.1, 403.2, 418.2	0.05		
5β-androstane-17α-methyl 3α,17β-diol (MEAD)	143, 255.2, 270.2, 435.3	0.05		
17β -Nortestosterone	182.1, 194.1, 403.2, 418.2	0.05		
17α -ethyl-5 β -estrane- 3α ,17 β -diol (EED)	157.1, 241.1, 331.2, 421.2	0.1		
5α -androstane-17 α -methyl 3 β ,17 β -diol (MEAD)	143, 255.2, 270.2, 435.3	0.1		
17α -Methyltestosterone	301.2, 341.2, 356.2, 446.3	0.1		
Norethandrolone	287.1, 300.2, 356.2, 446.3	0.1		
Chloorandrostenedione (CLAD)	429, 449.1, 464.2, 466.1	0.1		

Table 1. Selected ions monitored during the SIR experiments.

For the MRM experiments, the two transitions for each analyte and their associated dwell times and collision energies are listed in Table 2. The collision gas used was argon at a gas pressure 2.5e⁻³ mBar. The product ions in MRM are largely similar to the selected ions in SIR but they still represent higher selectivity due to the way they are generated.

The data were acquired using Waters MassLynx Software and processed using the TargetLynx Application Manager.

Compound	Transitions	Dwell time (s)	Collision Energy (eV)
DCD 129 (I.C.)	361.8 > 289.8	0.1	20
PCB-138 (I.S.)	359.8 > 324.8	0.1	10
17α -Nortestosterone	418.2 > 287.1	0.05	15
Πα-Nontestosterone	418.2 > 194.1	0.05	12
5β-androstane-17α-methyl 3α,17β-diol	435.2 > 345.2	0.05	10
(MEAD)	270.2 > 255.1	0.05	8
17β-Nortestosterone	418.2 > 287.1	0.05	15
	418.2 > 194.1	0.05	12
17α-ethyl-5β-estrane-3α,17β-diol	421.2 > 331.2	0.1	7
(EED)	331.2 > 241.1	0.1	10
5α -androstane- 17α -methyl 3β , 17β -diol	435.3 > 255.1	0.1	12
(MEAD)	435.3 > 345.2	0.1	8
17α-Methyltestosterone	446.3 > 301.1	0.4	12
17α-ivietri yitestostei one	301.2 > 169.1	0.1	12
Norethandrolone	446.3 > 287.1	0.1	10
INDIELIIAIIUPOIONE	446.3 > 356.2	0.1	8
Chloorandrostenedione	464.2 > 429.2	0.1	10
(CLAD)	464.2 > 449.2	0.1	10

Table 2. Transitions monitored during the MRM experiments.

Results and Discussion

The SIR results for the 100 ng/mL standard, equivalent to 1.0 ng/mL in urine, are illustrated in Figure 3. All four ions of 17α -nortestosterone can be clearly observed and integrated.

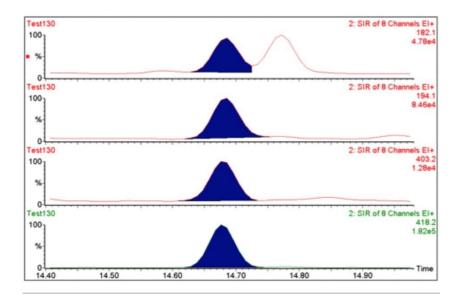


Figure 3. Four SIR ions of 17α -nortestosterone, 100 ng/mL (equivalent to 1.0 ng/mL in bovine urine).

It has been observed that as an animal ages the complexity of the urine matrix increases. The urine from a mature bovine (increased complexity) was spiked with a concentration of 1.0 ng/mL producing the SIR results illustrated in Figure 4.

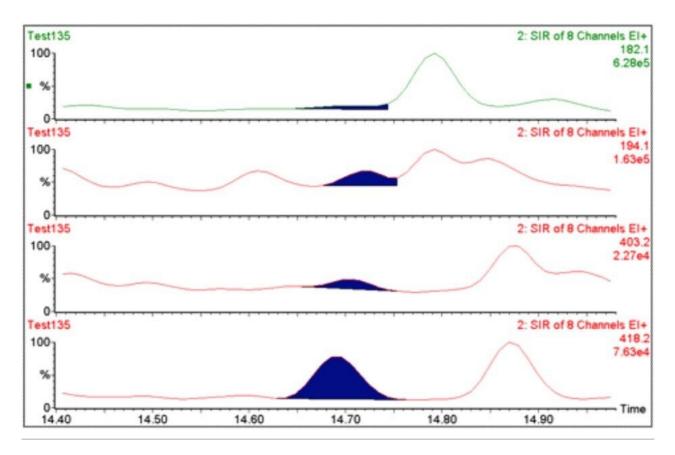


Figure 4. Four SIR ions of 17α-nortestosterone, 1.0 ng/mL in bovine urine.

In this example the molecular ion is still able to be quantified successfully. However, the three fragment ions used for confirmation are poorly resolved from matrix interferences, resulting in a failure of the confirmation criteria.

Selectivity can be gained through the use of the MRM technique. Figure 5 clearly illustrates the advantage of MRM as the analyte at the same concentration and in the same extract is resolved from all matrix interferences and can be easily quantified and confirmed. The product ion from the quantification transition, 418>194, is also recorded in SIR mode as one of the confirmation ions (see Figure 3) but the use of MRM results in a much improved signal to noise (S/N) ratio.

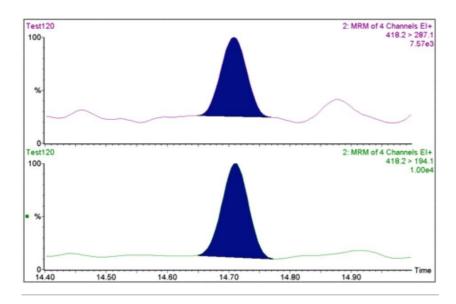


Figure 5. Two MRM transitions of 17α -nortestosterone, 1.0 ng/mL in bovine urine.

The standards and samples were injected and the data were processed using Waters TargetLynxapplication manager.Correlation coefficients of r^{2} > 0.992 without weighting were obtained for all eight compounds of interest. A representative calibration curve for 17 α nortestosterone, with a correlation coefficient of r^{2} = 0.999, is illustrated in Figure 6.

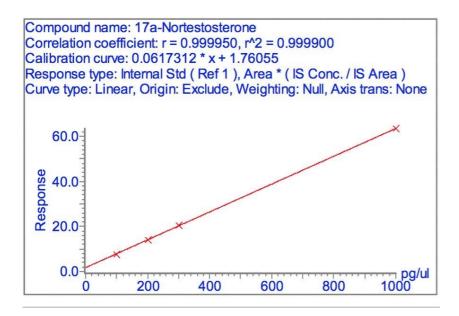


Figure 6. Representative calibration curve for 17α -nortestosterone, 100–1000 ng/mL corresponding to 1–10 ng/mL in urine.

Limits of detection (LOD) were determined for all the compounds in three different urine types, where the degree of interference increases, and are listed in Table 3. The LOD was defined as the concentration in urine injected that gave a signal for the confirmation transition equivalent to three times the baseline noise. From the table it can be seen that, in general, as the age of the bovine increases (clean to complex) the estimated confirmation LOD increases with the complexity of the matrix.

A TargetLynx browser window is illustrated in Figure 7 with a summary window providing quantification information (by compound). The calibration curve for the selected compound and the associated statistics are seen in addition to a manually controlled integration window for rapid screening of the automatic integration routine. In these examples the quantification was completed on the quantification transition with the ion ratio (between this transition and the confirmation transition) criteria as stated in EU Commission Decision 2002/657/EC² being obeyed.

Compound	Estimated confirmation LOD, ng/mL					
	Clean Urine	Medium Urine	Complex Urine			
17α -Nortestosterone	0.25	0.30	0.50			
5β-androstane-17α-methyl 3α,17β-diol (MEAD)	0.50	1.00	1.00			
17β -Nortestosterone	0.20	0.30	0.50			
17α-ethyl-5β-estrane-3α,17β-diol (EED)	0.10	0.50	0.50			
5α -androstane-17 α -methyl 3 β ,17 β -diol (MEAD)	0.50	1.00	1.00			
17α -Methyltestosterone	0.07	0.20	0.30			
Norethandrolone	0.30	1.00	1.00			
Chloorandrostenedione (CLAD)	1.00	2.00	2.00			

Table 3. Estimated confirmation LOD for all eight derivatised steroids in urine with various complexities.

Name Test102 Test103 Test104 Test106 Test106 Test115 Test116 Test116 Test118 Test118 Test119 Test120	Sample Test Tright object molue 0.3rght object molue 0.3rght object molue 0.3rght object molue Breit iso-cotien Sample To 11-8 medium une Sample To 11-8 medium une Sample To 23-9 medium une Sight Broots Sample To 23-9 medium une Sight Broots Sample 23-36 who une sight Broots Sample 23	Type Standard Standard Standard Standard Blank Analyte Analyte Analyte	300.00 200.00	14.69	Aces 26579.65 7964.97 5109.15 2879.00	1* Area 17252.633 5206.496 3253.918 1939.311	E Area 225272.859 207728.781 182996.125 203417.219	ppM 998.80 304.63 201.53 95.04	-0.1 1.5 0.8 .5.0	1* Ratio 1.530 1.530 1.530 1.530	1.541 1.530 1.570	1* Ratio Flag NO NO NO	1.10
Test100 Test104 Test105 Test105 Test115 Test115 Test117 Test110 Test110 Test110	Inglå söket mikare 0. Toglå söket mikare 0. Toglå söket mikare 0. Toglå söket mikare Banja ko tör i nedun unte Sanja ko tör 30 medun unte Sanja ko tör 30 medun unte tygå terositi Sanja ko 27.22 mediu unte 3.ggå terositi Sanja ko 27.42 mediu unte 3.ggå terositi	Standard Standard Standard Standard Blank Analyte Analyte	1000. 300.00 200.00	14.69	7964.97 5109.15	5206.496 3253.918	207728.781 182996.125	998.80 304.63 201.53	-0.1 1.5 0.8	1.530 1.530 1.530	1.530	NO NO	-
Test104 Test105 Test105 Test115 Test116 Test117 Test118 Test119 Test120	0.3mg/s schwart nichture 0.3mg/s schwart nichture 0.1mg/s schwart nichture Bitrist too ochsm Samgle No 17.05 medium unime Samgle No 17.05 medium unime Sugal strockts Samgle No 17.22 medium unime Sugal strockts Samgle No 27.24 medium unime Sugal strockts Samgle No 27.24 medium unime Sugal strockts	Standard Standard Blark Analyte Analyte	200.00	14.69	5109.15	3253.918	207728.781 182996.125	304.63 201.53	0.8	1.530	1.570	NO	
Text105 Text105 Text115 Text115 Text115 Text115 Text115 Text115 Text120	0.1rg/d solvert noture Bink too-octain Sample No 17.10 medium unite Sample No 19-20 medium unite 2,gdt sterosts Sample No 19-20 medium unite 2,gdt sterosts Sample No 23-24 medium unite 3,gdt sterosts	Standard Blank Analyte Analyte											
Test106 Test115 Test116 Test117 Test118 Test119 Test120	Blank too-octaine Sangle No 17.18 medium urine Sangle No 19-20 medium urine typit riferoids Sangle No 21-22 medium urine 2µgl steroids Sangle No 23-24 medium urine 3µgl steroids	Blank Analyte Analyte	100.00	14.69	2879.00	1909.311	203417,219	95.04	.6.0	1.4700	4 100		
Test115 Test116 Test117 Test118 Test119 Test120	Sample No 17-18 medium unine Sample No 19-20 medium unine 1µgit steroids Sample No 21-22 medium unine 2µgit steroids Sample No 23-24 medium unine 3µgit steroids	Analyte Analyte	_								1.485	NO	
Test116 Test117 Test118 Test119 Test120	Sample No 19-20 medium unine 1µg8 steroids Sample No 21-22 medium unine 2µg8 steroids Sample No 23-24 medium unine 3µg8 steroids	Analyte	-				301.383						
Test117 Test118 Test119 Test120	Sample No 21-22 medium unite 2µg4 steroids Sample No 23-24 medium unite 3µg4 steroids						98615.859						
Test118 Test119 Test120	Sample No 23-24 medium unine 3µgit steroids	Analyte		14.71	615.77	426.394	81765.602	38.04		1.530	1.664	NO	
Test119 Test120				14.70	711.40	490,249	73737.344	56.20		1.530	1.451	NO	
Test120	Sample 25, 30 detv unite extract	Analyte		14.70	931.54	604.471	76820.109	78.39		1.530	1.541	NO	
		Analyte		-			66207.813						
	Sample 27-28 dirty unine 1µg/ steroids	Analyte		14.71	460.21	293.605	69063.891	30.40		1.530	1.567	NO	
Test121	Sample 29-30 dirty unine 2µg/ steroids	Acable		14.71	907.90	629.337	68722.250	92.19		1.530	1.490	NÓ	
Test122	Sample 31-32 dirty unine 3µg/l steroids	Analyte		14.72	1024.16	685.413	56511.400	132.40		1.530	1.494	NO	
		/	*		-								
					0			/		4			1 m
					pul solver							418.2*	287
				10	5		17a-Nortest	norsecon	e,14.69	17252.63	1	4.3734	*00
					1				1				
				Ι,	-				1				
/					-				1				
	ame. 17a-Norts oefficient r = 0.1 urve: 0.0617312 pe. Internal Std	N: 19 Sep 2004 14/3143 . Imm: 17.4 Notestbaterone officient r. o (999900, n°2 = 099900 own: 0.0017312 ** 17.0055 per Internal 35 (eff. 1), Area (IIS Canc, IIS Area) Intera, Origin: Exclude, Weighting Null, Aris trans. None	name: 17a-Nortestbsterone oefficient r = 0.999990, #2 = 0.999900 unw: 0.0617312 * x = 1.76055 p: Iróbmal 555 (Ref 1), Area* (IS Conc. / IS Area)	name: 17a-Nortestosterone oetticient r = 0.999950, r² = 0.999900 une: 0.0617312 * x + 1.76055 e⊨ irtema Esta (Ref 1), Area * (IB Conc. /IS Area)	same 17.4 Monesologierone 2000 ome: 0.0017312 ** 1.70055 per lokmant 51:0 (Seft 1, Ansa * (III Gronz, r/IS Area)) Josar, Origin: Exclude, Weighting: Null, Asis trans: None	same 17-k10desbatence ordenet r = 0.999900 unve: 0.0017112*+1.7605 per klownait Bit Cert 1, Avea * (10 Conc. / 10 Area) Josar, Origin: Exclude, Weighting: Null, Avis trans: None *	same 17-k100etbiotercee Generate r.o. 099900 unve: 0.0017312*+1.76056 per klowest Bio Cert J. Avea * (IC Conc. //S Area) Josar, Origin: Exclude, Weighting: Null, Avis trans: None *	same 17-k10desbisterone orderer er e 099900 unve: 0.0017112*+1.76056 per klowet 18 (ber 1), Akes * (li Conc. //S Area) Josar, Origin: Exclude, Weighting: Null, Akis trans: None *	same 17-kNoteststerene owne: 0.0471312*-17605. prev klownik 156 (cfr. 1/6 Area) Josar, Origin: Exclude, Weighting Null, Avis trans: None	same 17.4 klosestosterone ome: 0.6017312 ** 1.7605 per klosest 50 versionest = 0.999300 une: 0.6017312 ** 1.7605 per klosest 50 versionest (II Conc. r/IS Area) inear, Origin: Exclude, Weighting: Null, Aris trans: None Test102 Smooth(50,2x1) Test102 Smooth(50,2x1)	same 17-k10destbaterone orderer er o 099900 unve: 0.0017112*+1.76056 per klowet 18 (kef 1, Akes * (li Conc. //B Area) Josek, Origin: Exclude, Weighting: Null, Akis trans: None 10 17-Nortestosterone, 14.70,28579 6 	Arme 17.4 Monstolatione Definient no 99990, -P2 = 0.999900 where: 0.9917312 ** 1.76055 per klowest Bis (Ref 1), Area 1 (BiConc. IIS Area) Inear, Origin: Exclude, Weighting Null, Aris trans. None Test102 Encomptiol, 2xt) F2.465 Test102 Encomptiol, 2xt) F2.465	same 17.4 klossbatrone own: 0.0471312*4-17.605 pre klosski Stronge er klosski Stronge er klosski Stronge klosski Origin: Exclude, Weighting Null, Aris trans. None Test102: Smooth(20,2x1) 17.6 Nontestopterone, 14.70,26579.65 10 17.6 Nontestopterone, 14.70,26579.65 17.6 Nontestopterone, 14

Figure 7. TargetLynx browser containing sample spreadsheet information by compound, a calibration curve and an interactive integration window.

The expected ion ratio for each compound was determined from the average of the four solvent standards. Table 4 lists the expected and experimentally determined ion ratios for each steroid in addition to the % relative standard deviation (%RSD) for all sample injections where the compound was detected. The Commission Decision 2002/657/EC² criteria, which is dependent on the relative abundance of the confirmation transition to the quantification transition, is also listed in Table 4.

Compound	Expected Ion Ratio	Determined Ion Ratio	% RSD	EC Legislation
17α -Nortestosterone	65.4%	66.2%	2.8	20
5β-androstane-17α-methyl 3α,17β-diol (MEAD)	85.5%	77.5%	12.2	20
17β-Nortestosterone	74.6%	74.1%	6.7	20
17α-ethyl-5β-estrane-3α,17β-diol (EED)	58.8%	53.8%	11.1	20
5_{α} -androstane-17 $_{\alpha}$ -methyl 3 $_{\beta}$,17 $_{\beta}$ -diol (MEAD)	14.3%	15.6%	23.0	30
17α -Methyltestosterone	55.6%	50.0%	7.4	20
Norethandrolone	28.1%	27.0%	14.2	25
Chloorandrostenedione (CLAD)	50.0%	50.0%	1.3	25

Table 4. Ion ratio statistics for the eight derivatised steroids.

Conclusion

Current EU legislation stipulates that when using selected ion recording (SIR) four ions must be monitored for each analyte to quantify and confirm derivatised steroids in urine extracts. SIR analysis of urine extracts can display difficulties in resolving the analyte from the background matrix and meeting those criteria.

This application note has shown that through the use of tandem quadrupole MS/MS, greater selectivity can be achieved, especially from complex urine extracts (mature bovine). Greater confidence is gained from confirming with two multiple reaction monitoring (MRM) transitions when the relative abundance of those transitions is in agreement with the reference standard. Excellent linearity was achieved for all the analytes. The LODs for all eight analytes (using the confirmation transition) was determined to be equal to or less than 1.0 ng/mL with the exception of CLAD in all types of urine.

All quantitative processing was completed through the use of the TargetLynx application manager. TargetLynx provides advanced quantification with a range of automatic quality control checks including a compliance check in accordance with EU requirements for confirmatory analysis of banned substances.

References

- 1. Le Bizec, B., Marchand, P., Gadé, C., Maume, D., Monteau, F. and André, F. Publication contributed to Euroresidue IV Conference, 8–10th May 2000, Veldhoven, The Netherlands.
- Commission Decision 2002/657/EC, Official Journal of the European Communities, No. L221(2002) 8–36.

Featured Products

MassLynx MS Software https://www.waters.com/513662>

TargetLynx <https://www.waters.com/513791>

720001287, June 2005

 $\ensuremath{\mathbb{C}}$ 2021 Waters Corporation. All Rights Reserved.