Waters™

Phenones Analysis by Two Phases

Waters Corporation

This is an Application Brief and does not contain a detailed Experimental section.

Abstract

This application brief demonstrates analysis of phenones.

Introduction

The compounds used in this study are -

- 1. Theophylline
- 2. 2-Acetylfuran
- 3. Acetanilide
- 4. Acetophenone
- 5. Propiophenone
- 6. Butyrophenone

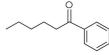
- 7. Benzophenone
- 8. Valerophenone
- 9. Hexanophenone
- 10. Heptanophenone
- 11. Octanophenone

Theophylline

2-Acetylfuran

Acetanilide

Acetophenone


Propiophenone

Butyrophenone

Benzophenone

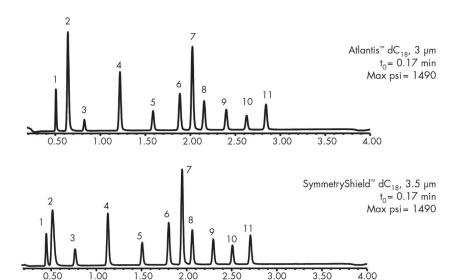
Valerophenone

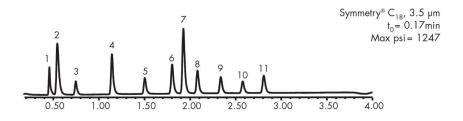
Hexanophenone

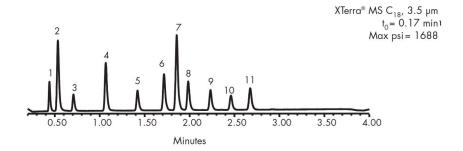
Heptanophenone

Octanophenone

Experimental


Conditions


Column:	Atlantis dC ₁₈ , 4.6 x 20 mm IS, 3 μ m, (P/N: 186002062) Symmetry Shield RP ₁₈ , 4.6 x 20 mm IS, 3.5 μ m, (P/N: 186002092)	
	Symmetry C_{18} , 4.6 x 20 mm IS, 3.5 μ m, (P/N: 186002090)	
	Xterra MS C_{18} , 4.6 x 20 mm IS, 3.5 μ m, (P/N: 186001891)	
Mobile phase A:	0.1% HCOOH in Water	
Mobile phase B:	0.1% HCOOH in Acetonitrile	
Mobile phase C:	1% HCOOH in Water	
Flow Rate:	3.0 mL/min	
Injection Volume:	10 μL	
Sample concentration:	20 μg/mL	
Temperature:	30 °C	
Detection:	UV @ 254 nm	
Instrument:	Alliance 2795 with 996 PDA	


Gradient

Time	Profile	
(min)	%A	%B
0.0	100	0
4.0	0	100

Results and Discussion

Featured Products

Alliance HPLC System https://www.waters.com/534293

WA31787.21, June 2003

© 2022 Waters Corporation. All Rights Reserved.