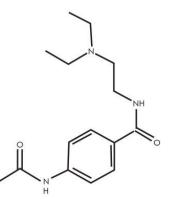
Waters™

Pharmaceutical Compounds in Plasma

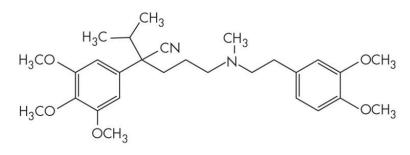
Waters Corporation

This is an Application Brief and does not contain a detailed Experimental section.

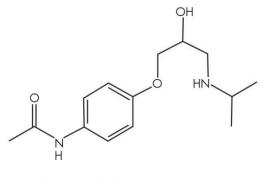
Abstract


This application brief demonstrates analysis of pharmaceutical compounds in plasma.

Introduction


The compounds used in this study are -

- 1. Caffeine
- 2. Practolol
- 3. N-acetyl procainamide
- 4. Propranolol
- 5. Methoxyverapamil
- 6. Amitriptyline


Caffeine

N-acetyl procainamide

Methoxyverapamil

Practolol

Propranolol

Amitriptyline

Experimental

LC Conditions

Mobile phase A: 10 mM NH₄HCO₃, pH 10

Mobile phase B: Methanol

Flow rate: 0.4 mL/min

Injection volume: 20 μ L

Sample concentration: $5 \mu g/mL$

Temperature: Ambient

Detection: MS

Instrument: Waters 277 Sample Manager, Waters 1525 Binary H

Pump and Waters Micromass Quattro Ultima

Gradient

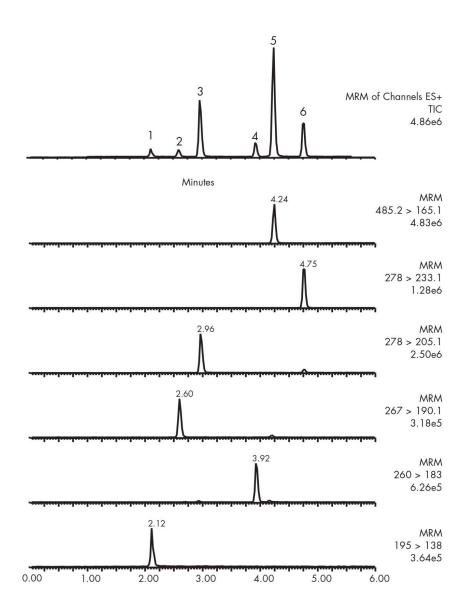
Time (min)	Profile	
	%A	%B
0.0	100	0
5.0	5	95

MS Conditions

Quattro Ultima

ES⁺ MRM cone (V): 5.0

Quattro Ultima	
Capillary:	3.5
Source temp. (°C):	150
Desolvation temp. (°C):	400
Cone gas flow (L/Hr):	50
Desolvation gas fLow(L/Hr):	550
LM resolution 1 & 2:	13.5
HM resolution 1 & 2:	13.5
lon energy 1:	0.4
lon energy 2:	0.8
Multiplier (V):	650
Sample Preparation	
SPE:	Oasis HLB µElution Plate, (p/n:186001828BA) p/n:186001828BA
Condition:	200 μL Methanol
Equilibrate:	200 μL Water
Load:	150 μ L Spiked rat plasma with 2% H_3PO_4 , diluted with 1:1 Water


Wash:	200 μ L 5% Methanol in Water	
Elute:	50 μL Methanol	
Dilute:	100 μL Water	

Results and Discussion

Compounds (MRM Transitions, Cone voltage (V), CID (eV)

- 1. Caffeine (195 > 138; 20; 20)
- 2. Practolol (267 > 190.1; 30; 20)
- 3. N-acetyl procainamide (278 > 205.1; 25;20)
- 4. Propranolol (260 > 183; 25;18)
- 5. Methoxyverapamil (485.2 > 165.1; 45; 30)
- 6. Amitriptyline (278 > 233.1; 25; 17)

The top figure is the total ion current, followed by the extracted ion signals for each of the three analytes.

Featured Products

WA31787.19, June 2003

© 2021 Waters Corporation. All Rights Reserved.					