
Waters™

アプリケーションノート

Ecstacy (MDMA) and Metabolites by LC-MS/MS

Waters Corporation

This is an Application Brief and does not contain a detailed Experimental section.

Abstract

This application brief highlights about the analysis of MDMA and its metabolites by LC-MS/MS method

Introduction

ECSTASYMETABOLITE (HMMA)

ECSTASY (MDMA)

Experimental

HPLC Conditions

Column:	XTerra MS C $_{18}$ 2.1 x 150 mm, 3.5 μm
Part number:	186000408
Mobile phase A:	20 mM NH ₄ HCO ₃ , pH 9.0
Mobile phase B:	МеОН
Flow rate:	0.2 mL/min
Isocratic mobile phase composition:	70% A; 30% B
Injection volume:	15 μL
Temperature:	30 °C
Detection:	MS ESI+
Instrument:	Alliance 2695, Micromass ZQ
MS Conditions	
Instrument:	Waters/Micromass ZQ
Ion source:	Electrospray Positive
Source temperature:	150°C
Desolvation temperature:	350°C

OASIS® MCX EXTRACTION METHOD

Oasis® MCX Extraction Cartridge, 1 cc/60 mg Part Number 186000252

CONDITION:

1 mL methanol/1 mL water

LOAD:

Prepare Sample glucuronidase, pH 5.2 8 hrs @ 37° 1 mL sample

WASH 1:

 $2\ \text{mL}\ \text{O.1}\ \text{N}\ \text{HCl}$ locks drugs by cation exchange

WASH 2:

1 mL methanol removes acidic and neutral interferences

RE-EQUILIBRATE:

1 mL water

WASH 3:

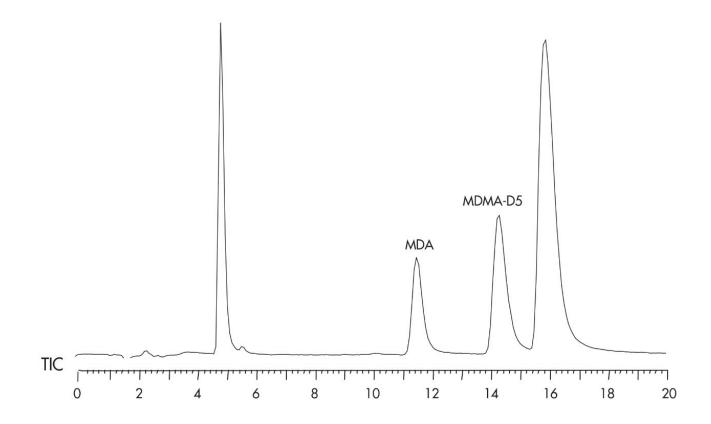
1 mL 70:30 5% $NH_4OH/methanol$ removes most basic interferences

ELUTE:

 2×1 methanol (10% NH_4OH)

Results and Discussion

Ions Monitored


MDMA		НММА	
Ion (<i>m/z</i>)	Cone (V)	Ion (<i>m/z</i>)	Cone (V)
194.11	25.0	196.16	20.0
163.08	37.5	165.08	37.5
135.00	55.0	137.00	55.0

MDA	
Ion (<i>m/z</i>)	Cone (V)
180.0	20.0
163.08	37.5
135.00	55.0

Analytes (LCMS)	Recovery (%)	Concentration (µg/mL)	RSD (%)		
MDMA	108.0	0.10	9.8		
	89.3	0.50	4.9		
	88.1	1.25	4.6		
	98.8	2.50	3.7		
	99.9	5.00	5.7		
MDA	103.0	0.10	8.8		
	84.2	0.50	13.9		
	83.8	1.25	9.8		
	95.4	2.50	9.0		
	104.5	5.00	13.4		
	93.7	20.00	13.1		
НММА	90.5	0.04	8.2		
	88.1	0.25	4.5		
	84.8	0.50	5.4		
	94.8	1.00	4.0		
	100.0	2.00	5.3		
	97.9	8.00	11.4		

Compounds

- 1. 4-Hydroxy-3-methoxymetmamphetamine (HMMA).
- 2. 3,4-Methylenedioxyamphetamine (MDA)
- 3. MDMA-D5 (ISTD)
- 4. 3,4-Methylenedioxymethamphetamine (MDMA)

Analysis at pH 9 allows good peak shape and maximum retention for basic compounds with no modifiers that can interfere with LC-MS analysis. Do not try this with traditional silica based columns.

Featured Products

Alliance HPLC System https://www.waters.com/534293

WA31764.72, June 2003

© 2022 Waters Corporation. All Rights Reserved.							