Waters™

Desalting of DNA Oligonucleotides by SPE for MALDI Analysis

Waters Corporation

This is an Application Brief and does not contain a detailed Experimental section.

Abstract

This application brief highlights on the desalting of DNA oligonucleotides by SPE for MALDI analysis.

Introduction

Principles of Desalting

DNA oligonucleotides are retained on the Oasis HLB sorbent by ion-pair reversed-phase mechanism. A volatile ion-pair agent is used as loading buffer* (0.1 triethylamine acetate, pH \sim 7).

The Oasis HLB µElution 96 well plate has sufficient capacity for desalting 1 pmol up to 5,000 pmol of oligonucleotides sample.

NEW! OASIS® µELUTION PLATE

Experimental

OASIS® HLB µELUTION PLATE EXTRACTION PROTOCOL

Conditions for Oasis® HLB µElution 96-well Plate Part Number 186001828BA

CONDITION:

200 µL 70 % Acetonitrile H₂O

EQUILIBRATE:

200 µL H₂O

LOAD:

Load solution onto plate at 1 mL/min or less (Low loading speed prevents breakthrough of Oligonucleotides)

WASH #1:

800 µL of 0.1 M TEAAc* buffer (to remove Salts)

WASH #2:

200 μ L of H₂O (to remove excess buffer and salts)

ELUTE:

25~mL of 70 % ACN, using a vacuum manifold. Alternatively, centrifuge plate with 10 μl of 70 % ACN

Lyophilize eluent to complete dryness using SpeedVac Dissolve sample in MALDI matrix solution

Featured Products
VA31764.65, June 2003
© 2022 Waters Corporation. All Rights Reserved.