Waters™

アプリケーションノート

Carbamates in Drinking Water by LC-MS (Endocrine Disruptors)

Waters Corporation

This is an Application Brief and does not contain a detailed Experimental section.

Abstract

This application brief demonstrates the analysis of carbamates in drinking water by LC-MS.

Introduction

Experimental

HPLC Method

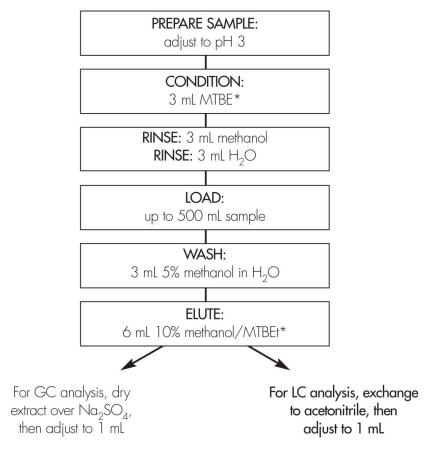
Column: Symmetry C_{18} , 1.0×150 mm, $3.5 \mu m$

Part number: WAT248059

Mobile phase A: 10% methanol/10 mM ammonium acetate

Mobile phase B: 90% methanol/10 mM ammonium acetate

Gradient: 90% A initial, linear gradient to 90% B in 10


minutes

Injection volume: 10 μL

Flow rate:	75 μL/min
Temperature:	35 °C
Instrument:	Waters Alliance Separations Module
MS Conditions	
Instrument:	Waters/Micromass ZMD4000
Interface:	Positive Electrospray (ESI+), Multiple Selected-Ion Recording (SIR)

OASIS® SPE METHOD FOR ENDOCRINE DISRUPTORS

Conditions for Oasis® HLB Cartridge, 6 cc/200 mg Part Number WAT106202

* methyl tbutyl ether diethyl ether can be used as an alternative to MTBE

Results and Discussion

SIR group	Time (mins)	Compound	Mass	Cone voltage	Dwell time
1	0-9	Aldicarb Sulfoxide	207.1	18 V	0.5 secs
		Aldicarb Sulfone	223.2	25 V	0.5 secs
		Oxamyl	237.2	10 V	0.5 secs
		Methomyl	163.2	15 V	0.5 secs
2	9-11	3-OH Carbofuran	238.2	15 V	1.5 secs
3	0.5-12.5	Aldicarb	208.2	8 V	1.5 secs
4	11.5 –14	Propoxur	210.2	18 V	0.4 secs
		Carbofuran	222.2	22 V	0.4 secs
		Carbaryl	202.2	18 V	0.4 secs
5	14-20	Methiocarb	226.2	19 V	0.6 secs

Compounds	% Recovery LC/MS*	
	500 ng/L	
1. Aldicarb Sulfoxide	74.8 (19)	
2. Aldicarb Sulfone	88.7 (16)	
3. Oxamyl	83.2 (18)	
4. Methomyl	92.3 (8.0)	
5. 3-Hydroxycarbofuran	101 (8.6)	
6. Aldicarb	79.4 (9.3)	
7. Propoxur	103 (13)	
8. Carbofuran	95.6 (7.5)	
9. Carbaryl	97.7 (14)	
10. Methiocarb	81.2 (14)	

Featured Products		
WA31764.50, June 2003		
© 2022 Waters Corporation. All Righ	ts Reserved	
2022 Waters corporation. All high	to reserved.	