Waters™

Applikationsbericht

Protriptyline in Urine by Mixed-Mode Weak Cation Exchange and LC-MS/MS

Wate	ers C	orn	orat	ion
vvalt	:15 0	UID	urat	IOI I

This is an Application Brief and does not contain a detailed Experimental section.

Abstract

This application brief demonstrates analysis of protriptyline in urine by mixed-mode weak cation exchange and LC-MS/MS.

Introduction

The compound analyzed in this study is Protriptyline.

Protriptyline

Experimental

LC Conditions

XTerra MS C_{18} 2.1 x 20 mm \emph{IS} , 3.5 μm Column: Part number: 186001923 Mobile phase A: 10 mM NH₄HCO₃, pH 10 MeOH with 10 mM NH₄HCO₃, pH 10 Mobile phase B: Flow rate: 0.4 mL/min Injection volume: 10 µL Column temperature: Ambient Waters 2777 Sample Manager and Waters 1525µ Instrument:

Gradient

Time (min)	%A	%B
0.0	95	5
3.0	5	95
4.0	5	95
4.1	95	5
5.0	95	5

MS Conditions

Waters Micromass Qu	uattro U	Itıma
---------------------	----------	-------

ESI+

Source temp.: 150 °C

Desolvation temp.: $350 \, ^{\circ}\text{C}$ Cone gas flow: $50 \, \text{L/Hr}$ Desolvation gas flow: $550 \, \text{L/Hr}$ Collision cell: $2.2\text{e}^{-3} \, \text{bar} \, (\text{Argon gas})$ Cone voltage: $60 \, \text{volts}$ CID: 25eVMRM transition: $m/z \, 264.0 \, \Rightarrow 191.1$

Oasis® WCX µElution Plate

Part Number: 186002499

Results and Discussion

107% Recovery

Featured Products

WA31764.198, June 2003

© 2022 Waters Corporation. All Rights Reserved.