Waters™

Valethamate in Rat Plasma by Mixed-Mode Weak Cation Exchange and LC-MS/MS

Waters Corporation

This is an Application Brief and does not contain a detailed Experimental section.

Abstract

This application brief demonstrates analysis of valethamate in rat plasma by mixed-mode weak cation exchange and LC-MS/MS.

Introduction

The compound analyzed in this study is valethamate.

Valethamate

Experimental

LC Conditions

Column: XTerra MS C_{18} 2.1 x 20 mm \emph{IS} , 3.5 μm Part number: 186001923 Mobile phase A: 10 mM NH₄HCO₃, pH 10 Mobile phase B: MeOH with 10 mM NH_4HCO_3 , pH 10 Flow rate: 0.4 mL/min Injection volume: 10 μL Column temperature: Ambient Instrument: Waters 2777 Sample Manager and Waters 1525 $\!\mu$ Binary HPLC Pump

Gradient

Time (min)	%A	%B	
0.0	95	5	
3.0	5	95	
4.0	5	95	
4.1	95	5	
5.0	95	5	

MS Conditions

Waters Micromass Quattro Ultima

ESI+

Source temp.: 150 °C

Desolvation temp.: 350 °C

Cone gas flow: 50 L/Hr

Desolvation gas flow: 550 L/Hr

Collision cell: 2.2e⁻³ bar (Argon gas)

Cone voltage: 35 volts

CID: 20eV

MRM transition: $m/z 306.1 \Rightarrow 218.9$

Oasis® WCX µElution Plate

Part Number: 186002499

Results and Discussion

106% Recovery

Featured Products

WA31764.195, June 2003

© 2022 Waters Corporation. All Rights Reserved.				