Waters™

アプリケーションノート

Valethamate in Rat Plasma by Mixed-Mode Weak Cation Exchange and LC-MS/MS

Waters Corporation

This is an Application Brief and does not contain a detailed Experimental section.

Abstract

This application brief demonstrates analysis of valethamate in rat plasma by mixed-mode weak cation exchange and LC-MS/MS.

Introduction

The compound analyzed in this study is valethamate.

Valethamate

Experimental

LC Conditions

Instrument:

Column:XTerra MS C18 2.1 x 20 mm /S, 3.5 μmPart number:186001923Mobile phase A:10 mM NH4HCO3, pH 10Mobile phase B:MeOH with 10 mM NH4HCO3, pH 10Flow rate:0.4 mL/minInjection volume:10 μLColumn temperature:Ambient

Waters 2777 Sample Manager and Waters 1525μ

Binary HPLC Pump

Gradient

Time (min)	%A	%B	
0.0	95	5	
3.0	5	95	
4.0	5	95	
4.1	95	5	
5.0	95	5	

MS Conditions

Waters Micromass Quattro Ultima

ESI+

Source temp.: 150 °C

Desolvation temp.: 350 °C

Cone gas flow: 50 L/Hr

Desolvation gas flow:	550 L/Hr
Collision cell:	2.2e ⁻³ bar (Argon gas)
Cone voltage:	35 volts
CID:	20eV
MRM transition:	$m/z 306.1 \rightarrow 218.9$

Oasis® WCX µElution Plate

Part Number: 186002499

Results and Discussion

106% Recovery

Featured Products

WA31764.195, June 2003

© 2022 Waters Corporation. All Rights Reserved.				