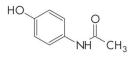
Waters™

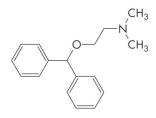
Pharmaceutical Residues in Environmental Samples - LC/UV, 2.5 ppb

Waters Corporation


This is an Application Brief and does not contain a detailed Experimental section.

Abstract

This application brief highlights the analysis of pharmaceutical residues in environmental samples using XTerra


Introduction

Compounds used in this study are: 1. Acetaminophen 2. Phenylpropanolamine 3. Salicylic acid 4. Diphenhydramine 5. Clofibric acid 6. Ethynylestradiol 7. Tamoxifen 8. Ibuprofen

Acetaminophen

Clofibric acid

Diphenhydramine

Ethynylestradiol

Ibuprofen

Phenylpropanolamine

Salicylic acid

Tamoxifen

Experimental

HPLC Conditions

Column: XTerra MS C_{18} 4.6 x 100 mm, 3.5 μ m (p/n:

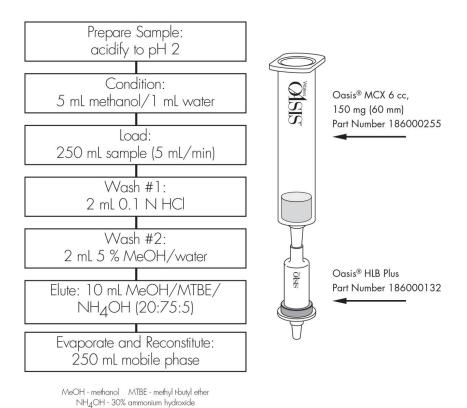
186000436)

Mobile phase A: 15 mM NH₄COOH, pH 4.0

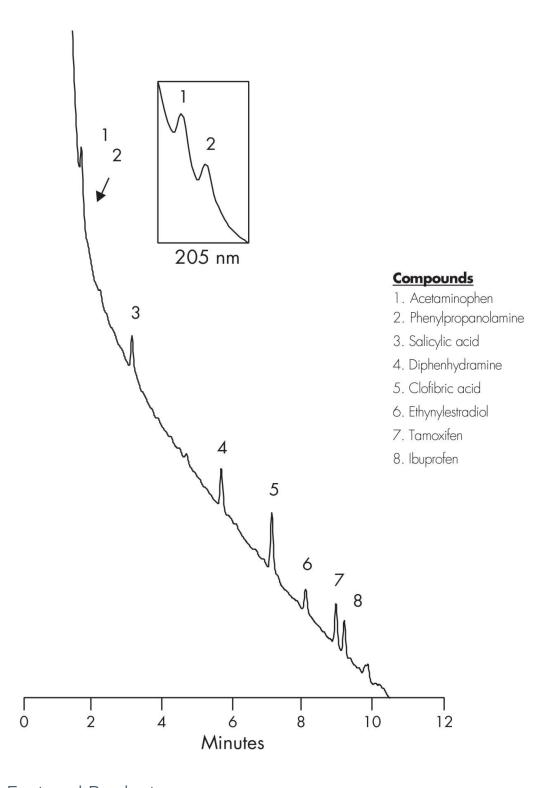
Mobile phase B: MeOH

Flow rate: 1.0 mL/min

Injection volume: 40 μ L


Detection: UV @ 230 nm

Instrument: Alliance 2695, 2996 PDA


Gradient

Time	ime Profile	
(min)	%A	%B
0.0	75	25
10.0	10	90

Optimized SPE Method for LC/MS Determination of Pharmaceutical Residues in Environmental Samples Conditions for Oasis® MCX 6 cc/150 mg (60 µm) Part Number 186000255 Oasis® HLB Plus Part Number 186000132

Results and Discussion

Featured Products

[·] Alliance HPLC https://www.waters.com/514248

WA20738.085, June 2002
^
© 2021 Waters Corporation. All Rights Reserved.