Per- and polyfluorinated compounds (PFC) analysis of various matrices using UPLC-MS/MS and GC-MS/MS

Human exposure to PFCs through food, drinking water, house dust and indoor air

Ingrid Ericson Jogsten
8 November 2011

Waters 2nd Nordic MS Symposium
Outline of presentation

• General background on PFCs
 • Sources of exposure
 • Human exposure and pathways of exposure

• Methodology
 • Sample preparation techniques
 • Human whole blood
 • Food
 • Water
 • Dust
 • Indoor air
 • Instrumental analysis

• Developments in methodology

• Total human exposure to PFCs
 • Internal exposure – blood levels
 • External exposure sources:
 • Food
 • Drinking water
 • Indoor environment: dust and air
Per- and polyfluorinated compounds (PFCs)

Global distribution in humans and wildlife

Unique properties
- Oil, water and grease repellency

PFOS
- Persistent, Bioaccumulative, Toxic
- Annex B, Stockholm Convention

PFOA
- Persistent
- Present in humans and wildlife in ppb-levels

Fluorotelomers (FTOHs), FOSA/Es, surfactants (PAPs), polymers

Numerous industrial and commercial applications
- Surfactants and surface protectors in carpets, leather, paper, food containers, fabric and upholstery
- Used in waxes, polishes, paints, varnishes and cleaning products
Human exposure

- General population – low ng/mL levels

- Pathways for human exposure
 - Food
 - Drinking water
 - Air
 - Dust
 - Contact exposure
 - Occupationally exposure
 - From contaminated sites
PFC exposure in a selected region

Biomonitoring of PFC in humans - blood levels (internal exposure)

PFC levels in food samples
Consumption of various food stuffs

PFC in drinking water
Drinking water consumption: 1.41 L/day, 0.40 L/day

Indoor sources: house dust and indoor air
Dust ingestion rate, inhalation rate
Methodology

• Sample matrices: human whole blood, food, water, air, house dust

• Method validation
 – Spiking experiments
 – Sample preparation
 • Extraction and clean-up
 – Instrumental analysis
Sample preparation — whole blood

- **Sample**
 - 0.5 ml blood (serum)
 - Spiked with internal std
 - Vortex mixing
 - Add formic acid/water (1:1)
 - Sonicate 15 min
 - Centrifuge at 10 000 x g, 30 min

- **Extraction on Waters Oasis® WAX SPE column** (60 mg / 3 mL)
 - Extract the supernatant on WAX (conditioned with 2 ml MeOH, 2 ml water)
 - Wash with 40 % MeOH
 - Dry columns under vacuum suction
 - Elute PFCs with 1 ml 1 % NH₄OH in MeOH

- **Filtration**
- Addition of recovery standard
- Instrumental analysis on LC-MS

- **Similar procedure for analysis of human milk samples**
- **Additional pre-concentration steps**
 - Large volume injection column switch
 - Reducing extract volume to 10 %

Solid phase extraction

- Waters Oasis® WAX SPE Column
- Mixed-mode Weak Anion-exchange and reversed-phase sorbent
- Single use Oasis cartridge
- Retain and release strong acids (e.g. sulfonates).

- Alternative methods for blood analysis
 - Simple extraction with MeOH or ACN – clean up using dispersive carbon (ENVI-Carb)
 - Large volume injection and column switching

Oasis® WAX

```
PKa ~6
0.6 meq/g
```
WAX – Recovery

![Graph showing recovery percentages for various compounds compared to WAX and C18 HF.](image-url)
Sample preparation — food samples

• **Sample types**: composite and individual food samples including processed, packaged, raw and cooked food
• 1 g freeze-dried sample
• Spike with internal standards
• Alkaline digestion (2 mL 0.2 mM NaOH in MeOH) and extraction with MeOH (10 mL)
• SPE-WAX (150mg/6cc)
 – Pre-cleaned with 2 mL water, 2 mL MeOH
 – Eluted with 2 mL 2% NH₄ in MeOH
• ENVI-Carb clean up
• Filtration
• Final volume of 500 ul including recovery standards
Sample preparation — water

- **Sample types:** drinking, river water and bottled water
- Pre-treatment: acidification to pH 4, stored refrigerated, filtration (glass microfiber)
- 500 mL
- Spike with internal standards
- Concentration on SPE-WAX (150mg/6cc)
 - Pre-cleaned with 2 mL water, 2 mL MeOH
 - Eluted with 2 mL 2% NH$_4$ in MeOH
- Filtration
- Final volume of 500 ul including recovery standards
Sample preparation – PFCs in house dust

- Sampling of vacuum cleaner dust bags (n=10)
- 1 g dust (<150 µm)
- Spike with internal standards
- Repeated extraction with methanol followed by sonication and centrifugation
- Clean up by ENVI-Carb dispersive carbon (25 mg)

- Final volume of 500 µl including recovery standards
 - Extracts split
 - GC-MS/MS analysis of neutral compounds
 - LC-MS/MS analysis of ionic compounds
Sample preparation – PFC in indoor air

- High volume sampling (>1 m over the floor) on pre-cleaned Isolute ENV+ cartridges (n=10, 2 replicates)
 - Sampling spikes: 13C$_4$-8:2 FTOH, 13C$_8$-PFOA
 - Volume sampled: 2820-3280 dm3

- Stored air tight in -20 C and analyzed within 2 months of sampling

- Addition of labelled extraction standards (IS)
- Extraction with methanol

- Final volume of 500 µl including recovery standards
 - Extracts split
 - GC-MS/MS analysis of neutral compounds
 - LC-MS/MS analysis of ionic compounds
Alternative sample preparation techniques used at MTM

- **Sample types**: soil and dry sediment, various biota samples (mink liver, fish liver, fish muscle, pig liver, mussel, limpet)
 - Alkaline digestion
 - Extraction with ACN
 - Hexane shake: repeated (3 times) addition of hexane (1:2 of hexane:extract) followed by vigorous shaking and removal of hexane fraction (for lipid removal)
 - ENVI-Carb
Instrumental analysis

• Ionic PFCs
 – LC-SQ-MS for whole blood, food and water samples
 – UPLC-MS/MS for food, drinking water, house dust and indoor air

• Non-ionic PFCs
 – GC-MS/MS for house dust and indoor air samples
LC-MS

- **HP 1100 LC/MSD**
 - Analytical column: Discovery HS C18 (50 x 2.1 mm, 3 um)
 - Guard column as analytical column
 - Electrospray (negative mode)

- **Mobile phases**
 - 2 mM NH$_4$Ac in Water (A)
 - 2 mM NH$_4$Ac in MeOH (B)
 - Flow rate 0.3 ml/min
 - Column temperature: 40 ºC

- **Gradient program**
 - 0 min, 35 % B
 - 20 min, 90 % B, 2 min hold
 - 25 min, 100 % B
 - 5 min stabilization time to initial conditions

UPLC-MS/MS

• Waters ACQUITY UPLC System
 – Pre-column: Symmetry C18, 2.1 x 100mm, 3.5μm
 – Analytical column: ACQUITY BEH C18, 2.1 x 50mm, 1.7μm

• Mobile Phases
 – A : Aqueous + 2mM ammonium acetate
 – B : Methanol + 2mM ammonium acetate
 » Flow rate = 0.4 mL/min
 » Injection volume = 10 μL
 » Column temp = 50°C

• UPLC solvent run
 » 0.0 min: 70% A 30% B
 » 0.5 min: 70% A 30% B
 » 5.0 min: 10% A 90% B
 » 5.1 min: 0% A 100% B
 » 6.0 min: 0% A 100% B

• MRM of molecular ion [M-H]⁻ for PFCAs and [M]⁻ for PFSAs with products ions [M-COOH]⁻ and [FSO₃]⁻

• QA/QC: 5-7 point calibration curves, internal standards for sampling and extraction, extraction and field blanks, spiked samples, S/N of 3, recovery > 50 %, in-house or certified reference samples, instrumental blank injections, participation in interlaboratory comparisons
Comparison of run-time & peak width obtained using UPLC and traditional HPLC
GC-MS/MS

• Nonionic PFCs:
 – flurotelomer alcohols (FTOH)
 – fluorooctane sulfonamides (FOSAs) and sulfonamidoethanols (FOSEs)

• Waters Quattro Micro GC system
 – FTOHs: Cl⁺, FOSA/Es: Cl⁻
 – 1 ul injection, pulsed splitless mode (40 psi), 250 C
 – Carrier: He 1.0 ml/min, Reagent: Methane
 – Separation: Supelcowax10 (30m, 0.25 mm i.d., 0.25 um)
 – Linear calibration range of 2-1250 pg/ul
 – RSD <30 % over 100 real sample injections
SIR vs MRM

- IDL ~1 pg/ul on column FTOHs and FOSA/Es in SIR and ~2 pg/ul in MRM
- Difficulties with positive confirmation in real samples (SIR)
- Increased specificity using MRM
 - S/N of 2.2 in SIR and 6.7 in MRM for 10:2 FTOH
SIR vs MRM

- IDL ~1 pg/ul on column FTOHs and FOSA/Es in SIR and ~2 pg/ul in MRM
- Difficulties with positive confirmation in real samples (SIR)
- Increased specificity using MRM
SIR vs MRM

- IDL ~1 pg/ul on column FTOHs and FOSA/Es in SIR and ~2 pg/ul in MRM
- Difficulties with positive confirmation in real samples (SIR)
- Increased specificity using MRM
MS details

<table>
<thead>
<tr>
<th>compound</th>
<th>abbreviation</th>
<th>m/z</th>
<th>labeled standards</th>
<th>UPLC-MS/MS</th>
<th>labeled standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>ionic PFCs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>perfluorocarboxylic acids</td>
<td>PFCAs</td>
<td>m/z</td>
<td>primary trace</td>
<td></td>
<td></td>
</tr>
<tr>
<td>perfluorobutanoic acid</td>
<td>PFBA</td>
<td>212.91 > 168.9</td>
<td></td>
<td>13C4-PFBA</td>
<td></td>
</tr>
<tr>
<td>perfluoropentanoic acid</td>
<td>PFPeA</td>
<td>262.97 > 218.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>perfluorohexanoic acid</td>
<td>PFHxA</td>
<td>269</td>
<td>313.13 > 268.8</td>
<td>13C4-PFHxA</td>
<td></td>
</tr>
<tr>
<td>perfluorheptanoic acid</td>
<td>PFHpA</td>
<td>319</td>
<td>363.18 > 319</td>
<td>7H-PFHxA</td>
<td></td>
</tr>
<tr>
<td>perfluorooctanoic acid</td>
<td>PFOA</td>
<td>369</td>
<td>412.9 >368.9</td>
<td>13C6-PFOA</td>
<td>13C7-PFOA</td>
</tr>
<tr>
<td>perfluorononanoic acid</td>
<td>PFNA</td>
<td>419</td>
<td>463.04 > 418.8</td>
<td>13C6-PFNA</td>
<td></td>
</tr>
<tr>
<td>perfluorodecanoic acid</td>
<td>PFDA</td>
<td>469</td>
<td>513.04 > 468.7</td>
<td></td>
<td>13C10-PFDA</td>
</tr>
<tr>
<td>perfluoroundecanoic acid</td>
<td>PFUnDA</td>
<td>519</td>
<td>562.78 > 518.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>perfluorododecanoic acid</td>
<td>PFDaO</td>
<td>612.91 > 568.8</td>
<td>612.91 > 168.8</td>
<td>13C12-PFDa</td>
<td></td>
</tr>
<tr>
<td>perfluorotridecanoic acid</td>
<td>PFTdA</td>
<td>662.84 > 619</td>
<td>662.84 > 269</td>
<td></td>
<td></td>
</tr>
<tr>
<td>perfluorotetradecanoic acid</td>
<td>PFTeDA</td>
<td>669</td>
<td>713 > 668.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>perfluorohexadecanoic acid</td>
<td>PFHxDA</td>
<td>812.78 > 269.0</td>
<td>812.78 > 768.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>perfluorooctadecanoic acid</td>
<td>PFOcDA</td>
<td>912.78 >169.1</td>
<td>912.78 >868.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6:2 fluorotelomer unsaturated carboxylic acid</td>
<td>6:2 FTUC</td>
<td>357.1 > 293.2</td>
<td></td>
<td></td>
<td>13C11-6:2 FTUC</td>
</tr>
<tr>
<td>8:2 fluorotelomer unsaturated carboxylic acid</td>
<td>8:2 FTUC</td>
<td>457.05 > 393.1</td>
<td>457.05 > 343.2</td>
<td></td>
<td>13C14-8:2 FTUC</td>
</tr>
<tr>
<td>10:2 fluorotelomer unsaturated carboxylic acid</td>
<td>10:2 FTUC</td>
<td>557 > 493.1</td>
<td></td>
<td></td>
<td>13C16-10:2 FTUC</td>
</tr>
<tr>
<td>5:3 fluorotelomer saturated carboxylic acid</td>
<td>5:3 FTSA</td>
<td>341.22 > 237.1</td>
<td></td>
<td></td>
<td>13C15-5:3 FTSA</td>
</tr>
<tr>
<td>7:3 fluorotelomer saturated carboxylic acid</td>
<td>7:3 FTSA</td>
<td>441.08 > 317.1</td>
<td></td>
<td></td>
<td>13C17-7:3 FTSA</td>
</tr>
<tr>
<td>perfluorosulfonic acids</td>
<td>PFSAs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>perfluorobutane sulfonic acid</td>
<td>PFBS</td>
<td>299</td>
<td>299.15 > 98.9</td>
<td>13C2-PFBS</td>
<td></td>
</tr>
<tr>
<td>perfluorohexane sulfonic acid</td>
<td>PFHxS</td>
<td>399</td>
<td>399.04 > 96.6</td>
<td>13C3-PFHxS</td>
<td></td>
</tr>
<tr>
<td>perfluorooctane sulfonic acid</td>
<td>PFOS</td>
<td>499</td>
<td>498.70 > 98.7</td>
<td></td>
<td>13C4-PFOS</td>
</tr>
<tr>
<td>perfluorodecane sulfonic acid</td>
<td>PFDS</td>
<td>599</td>
<td>598.84 > 98.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tetrahydroperfluoroctane sulfonic acid</td>
<td>THPFDa</td>
<td>427</td>
<td>426.97 > 80.70</td>
<td>13C4-PFDS</td>
<td></td>
</tr>
<tr>
<td>perfluorooctanesulfonamide</td>
<td>PFDSA</td>
<td>498</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>neutral PFCs</td>
<td></td>
<td></td>
<td></td>
<td>GC-MSMS (SIR)</td>
<td>GC-MSMS (MRM)</td>
</tr>
<tr>
<td>6:2 fluorotelomer alcohol</td>
<td>6:2 FTOH</td>
<td>365</td>
<td>365.00 > 327</td>
<td>13C11-6:2 FTOH</td>
<td></td>
</tr>
<tr>
<td>8:2 fluorotelomer alcohol</td>
<td>8:2 FTOH</td>
<td>465</td>
<td>465.00 > 427</td>
<td>13C13-8:2 FTOH</td>
<td></td>
</tr>
<tr>
<td>10:2 fluorotelomer alcohol</td>
<td>10:2 FTOH</td>
<td>565</td>
<td>565.00 >527</td>
<td>13C15-10:2 FTOH</td>
<td></td>
</tr>
<tr>
<td>N-methylperfluoroctane sulfonamide</td>
<td>MeFOSA</td>
<td>94>63.9</td>
<td></td>
<td>13C2-N-methyl</td>
<td></td>
</tr>
<tr>
<td>N-ethylperfluoroctane sulfonamide</td>
<td>EtFOSA</td>
<td>108>63.9</td>
<td></td>
<td></td>
<td>deuterated</td>
</tr>
<tr>
<td>2-(N-methylperfluoro-1-octanesulfonamido)-ethanol</td>
<td>MeFOS</td>
<td>138>64.9</td>
<td>138>74</td>
<td></td>
<td>deuterated</td>
</tr>
<tr>
<td>2-(N-ethylperfluoro-1-octanesulfonamido)-ethanol</td>
<td>EtFOS</td>
<td>152>64.9</td>
<td>152>88</td>
<td></td>
<td>deuterated</td>
</tr>
</tbody>
</table>
Analytical difficulties

- Known issue in the analysis of PFCs
 - 1) Procedure (major contamination)
 - Glassware
 - Vials, vial tops, etc
 - 2) Instrument
 - Solvents in LC run
 - Parts on the instrument pre-injector
 - Injector (minor contamination)
- Key contaminating compounds include
 - PFOA
 - PFNA

- Hard to achieve!
- For instrument:
 - Find solvents that have low levels
- Install a column post-pump and pre-injector
 - Separate the contaminating peak from the analytical peak
PFC exposure in a selected region

Biomonitoring of PFC in humans - blood levels (internal exposure)

PFC levels in food samples
Consumption of various food stuffs

PFC in drinking water
Drinking water consumption: 1.41 L/day, 0.40 L/day

Indoor sources: house dust and indoor air
Dust ingestion rate, inhalation rate
Total exposure from food, drinking water, house dust and indoor air

PFOS
- Dietary intake: 74
- Water: 5.2
- Air PFOS: 0.11
- Dust PFOS: 0.17
- Dust FOSA/E: 0.027

PFOA
- Air PFOA: 0.59
- Air FTOH: 1.3
- Water: 6.4
- Dust PFOA: 0.48
- Dust FTOH: 0.03
- Dietary intake fish, seafood: 24

External exposure
- 80 ng PFOS/day
- 33 ng PFOA/day

Internal exposure
- 103 ng PFOS/day
- 30 ng PFOA/day
THANK YOU

ACKNOWLEDGEMENTS

The Public Health Agency, Department of Health,
Generaliat de Catalunya
Svenska Naturvårdsverket (kontrakt 219 0603)
Cancer och Allergifonden
Ångpanneföreningen
Svenska Kemistsamfundet
Sveriges Ingenjörer
Formas

Contact information ingrid.ericson@oru.se