Naproxen in human at 1000 mg/day dosing level using LC/MS/MS. As can be seen in Figures 2 and 4, the high/low energy operation mode is shown with the high energy CID operating collision energy of 4eV was increased to 20eV to induce full spectra CD fragmentation and a collision energy of 12eV was used to perform MS/MS when a neutral loss of m/z 175 was observed MS/MS would be produced, to perform specific structural information.

CONCLUSIONS

• The enhancement of APCI to incorporate LockSpray functionality has enabled exact mass measurement errors of less than 3ppm to be obtained routinely.

• Utilising UPLC/TOF/MS eight metabolites of Naproxen were separated and identified.

• High/low-collision energy switching is routinely used to maximise information from one sample analysis, where both full spectra and CID fragmentation spectra are produced.

• Confirmation of the identification of six human urinary Naproxen glucuronide metabolites was performed using negative MS/MS.

REFERENCES


TO DOWNLOAD A COPY OF THIS POSTER VISIT WWW.WATERS.COM/POSTERS