

RESULTS AND DISCUSSION

The product ion spectra for CAP-d0 and CAP-d5 (IS) are shown in Figure 1. The transition 320.9>151.9 is used for quantification and the transition 320.9>193.9 is for conformation using the ion ratio between the two transitions. The three transitions for a blank milk sample are shown in the chromatograms in Figure 4 showing the characteristic for the blank standard (0.01 ppb) in Figure 5 showing the signal in sample (0.01 ppb) and the injection of 1.0 ppb. The use of a deuterated internal standard is very important.

The ion ratio between the two product ions is used for confirmation showing good agreement with the expected ratio. The use of a deuterated internal standard is very important. Comparison of the CAP analyses in incurred milk samples with a commercial lab shows good agreement.

The method gives an estimated LOQ of 0.001 ppb which is more than sufficient. The use of a deuterated internal standard is very important.

CONCLUSIONS

- A simple selection method for CAP in milk is presented.
- The use of a deuterated internal standard is very important.
- The method is very selective showing a tolerance in blank, spiked standards and incurred samples.
- The ion ratio between the two product ions is used for confirmation showing good agreement with the expected value.
- Comparison of the CAP analyses in incurred milk samples with a commercial lab shows good agreement.

MASS SPECTROMETRY

- *Chromatone™* Waters/Millimoles/Quadrupole M/S
- *LC/MS CONDITIONS*
 - Column: Waters Xterra MS C18 5 μm, 2 mm, 3 μm
 - Mobile Phase: A: Water B: Acetonitrile
 - Gradient:
 - Time % A % B Curve: Flow rate (ml/min)
 - 0.00: 0% 100% 0.45
 - 0.00: 95% 5% 1.00
 - 3.00: 99% 1% 0.40
 - 4.00: 3% 97% 0.30
 - 10.00: 3% 97% 0.30
 - Injection Volume: 10 µl
 - Temperature: 120°C
 - Source Temperature: 120°C
 - RF Lens 1: 0.67
 - RF Lens 2: 0.45
 - Entrance: -2
 - Exit: 0
 - Capillary: 1.00 kV
 - Negative electrospray
 - Resolution: 12.5
 - Entrance: 13.0
 - Exit: 13.0
 - Mass: 1.22
 - Multipplier: 640 V
 - Collision Cell Pressure: 0.17 x 10^6

MAN TRANSITIONS MONITORED

<table>
<thead>
<tr>
<th>Compound</th>
<th>Transition</th>
<th>Retention Time (min)</th>
<th>Quantification (ppb)</th>
<th>Confirmation (ppb)</th>
<th>COF average (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAP-d0</td>
<td>320.9>151.9</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>CAP-d5</td>
<td>320.9>151.9</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>CAP-d0</td>
<td>320.9>151.9</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>CAP-d5</td>
<td>320.9>151.9</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td></td>
</tr>
</tbody>
</table>

RESULTS

- Comparison of the CAP analyses in incurred milk samples with a commercial lab shows good agreement.

REFERENCES

Table 1: Results from milk sample analysis

<table>
<thead>
<tr>
<th>Type</th>
<th>CAP-d0</th>
<th>CAP-d5</th>
<th>CAP-d0</th>
<th>CAP-d5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Figure 1: Product ion spectra of CAP and CAP-d5.

Figure 2: Blank milk matrix.

Figure 3: Comparison of the CAP analyses in incurred milk samples with a commercial lab shows good agreement.

Figure 4: Calibration curve of CAP.

Figure 5: CAP standard 1 pg/µl.

Figure 6: Chromatogram from incurred milk sample.