INTERACTION POLYMER CHROMATOGRAPHY

Yefim Brun*, Chris Rasmussen, B. McCauley

DuPont Central Research & Development
yefim.brun@dupont.com

GPC/SEC and Related Techniques, Frankfurt, 2014
Liquid chromatography for polymer characterization

Dissolution → Separation → Detection → Data Reduction

Separation media
- porous particles (HPLC, UPLC)
- non-porous particles (HDC)
- monolithic columns
- capillary

Size Exclusion Chromatography
- SEC
 - separation by molecular size

Interaction Polymer Chromatography
- IPC
 - separation by **everything** but size

2D-Chromatography
- IPC/SEC, IPC/IPC, SEC/IPC
Molecular properties of polymers & other nanostructures

Molar mass, size and shape
- End-groups
 - Linear
 - Telechelic
- Topology
 - Star
 - Comb

Chemical Composition and Microstructure
- Homopolymers
 - Linear
 - Telechelic
- Copolymers
 - Statistical
 - Alternating
 - Block
 - Gradient

Biomolecules, nanoparticles, micelles, vesicles

Molecular heterogeneities (distributions): strong effect on end-use properties

Synthesis - Molecular Structure - Property
Open literature

1. SEC is by far the **most popular** LC technique for polymer characterization

2. IPC: mostly **isocratic separations** (LCCC+ barrier techniques)

3. HPLC practitioner: **do not use** isocratic mode in separation of big molecules!

DuPont

1. IPC/SEC: **50/50(%)**

2. IPC: **gradient** approaches (including TGIC) **>90%**

3. IPC: practically all separations problems are more effectively solved in gradient mode (vs. isocratic)

Perception: more difficult to control the mechanism of separation in gradient mode
How to control separation

- Order of elution (selectivity of separation) is determined by **mechanism of retention**
- Retention is result of **interaction** between molecules and solid surface of porous particles
- **Right balance** between different types of interaction is the key to **separation mechanism**

Steric Interaction (SEC)

Critical point of adsorption (LCCC)

IPC

Adsorption (HPLC) Phase Transition / Partition (Precipitation LC)

LCCC: LC at critical conditions, or LC at **critical point of adsorption** (CPA)

Enthalpy gain Entropy loss

Mutual compensation effect: MW-independent elution
Elution of Narrow Polystyrenes on Symmetry® C18

THF suppresses non-polar interaction

SEC mode at $\Phi = 100\%$THF : big elutes first

Non-polar interaction prevails

Adsorption mode at $\Phi = 45\%$THF : big elutes last (or does not elute at all)
Elution of Narrow Polystyrenes at Symmetry® C\textsubscript{18}

Critical Point of Adsorption (CPA)

<table>
<thead>
<tr>
<th>THF-ACN (48/52)</th>
<th>474</th>
<th>37,900</th>
<th>186,000</th>
</tr>
</thead>
</table>

Transition mode: MW-independent elution at $\Phi = \Phi_{cr}$ (48\% THF)

Elution at different compos. Φ (THF,%)

- **SEC**
- **LCCC**
- **LAC**

- $\Phi_{CR} = 48\%$
- 45
- 40
- 80
- 100

Elution volume V_R (mL)

- V_0
- V_{liq}

- t_R, min (flow rate 0.25 ml/min)
Applications

• Separation by functional groups
• Separation of block-copolymers by length of individual blocks
• Separation of homopolymer blends
• Not applicable to statistical copolymers

Limitations

• Often limited to oligomers/low-M polymer separations in wide-pore columns
• Very sensitive to experimental conditions
• Temperature/solvent composition fluctuations resulting in peak splitting, limited mass recovery

LCCC of 186K at different flow rates

Flow rate (ml/min):

Nova-Pak C\textsubscript{18} Column
(60A, 4 \(\mu\)m, 3.9 x 300 mm)
THF-ACN (49/51)

Let’s discuss after Falkenhagen’s and Hiller’s talks
Elution of linear PEG (MW=40K) with different end groups at CPA on Symmetry® C₄

Critical point of adsorption (CPA): 50% ACN in H₂O on Symmetry® C₄

$$K_{LCCC} = 1 + q$$

$$\Delta t = 0.13$$

- mono-brominated PEG
- PEG standard with 2 OH ends

$$\Phi = \Phi_{cr} = 50\%$$ ACN
Barrier Techniques

- **Liquid Chromatography under Limiting Conditions (D. Berek, et al)**
 - of adsorption (LGA): \(\Phi_{\text{sample}} > \Phi_{\text{CR}}, \Phi_{\text{eluent}} < \Phi_{\text{CR}} \)
 - of solubility (LCS): \(\Phi_{\text{sample}} > \Phi_{\text{SOL}}, \Phi_{\text{eluent}} < \Phi_{\text{SOL}} \)
 - of desorption (LCD): \(\Phi_{\text{sample}} < \Phi_{\text{CR}}, \Phi_{\text{eluent}} > \Phi_{\text{CR}} \)

- **Limitations**: local solvent gradient depends on viscosity, column hydrodynamics, chromatographic conditions (flow rate, injection volume, concentration), separation is limited to column volume

- **SEC-Gradients method (W. Radke)**

Let’s discuss after Radke’s talk
Chromatographic characterizations of polymer blend:
polystyrene / styrene-acrylonitrile copolymer / styrene-butadiene copolymer

SEC: separation by size

Isocratic separation by size in THF at SEC column set

Gradient IPC: MW-independent elution

Gradient separation by composition in ACN-THF gradient at C_{18} RP column
Elution of narrow polystyrenes at Symmetry® C18

ACN – THF gradient (0%-100%) over 10 min

Elution time, min (flow rate 1 ml/min)

Eluent composition \(\Phi \) (THF, %)

Oligomers

\(\Phi_{CR} \)

Eluent gradient

9,100

43,900

190,000

355,000

710,000

1,260,000

Gradient Elution (GE) at CPA

LAC

\(\Phi_{CR} = 48\% \) THF

Log \(M \)

0 10 20 30 40

0 2 4 6

Practical advice: even if you want to use LCCC, run gradient first: gradient elution is the best way to find critical point of adsorption

Brun, Alden, J. Liq. Chrom 2002
Solvent gradient methods

LAC
separation by MW, chemistry, etc.

GE at critical point of adsorption (CPA)
separation by chemistry, topology

Precipitation-redissolution chromatography (elution at dissolution point) (GPEC)
separation by MW and chemistry

CPA does not exist
Elution of narrow polystyrenes at Nova-Pak® C₈

Different modes of gradient separation

Gradient elution at CPA

ACN – THF (0 -100%) over 10 min

\[\Phi^*_{sol} < \Phi_{CR} \]: elution at CPA

Gradient elution at redissolution point (GPEC)

MeOH – THF (0 -100%) over 10 min

\(\Phi_{CR} \) does not exist: elution at redissolution

Brun, Alden, J. Liq. Chrom 2002
Elution of polystyrenes at Nova-Pak® C₈

X: MeOH (■) - elution at redissolution

ACN (◇) – elution at CPA

Only elution at CPA is MW-independent!
Gradient elution at redissolution point (GPEC)

Liquid-liquid phase *transition in the presence of solid surface*: $\Delta F \sim M (\Phi - \Phi^*_{\text{sol}})$

Usually, $\Phi^*_{\text{sol}} > \Phi_{\text{sol}}$

Threshold depends on polymer molecular weight and concentration

Φ^*_{sol} vs. $\Phi_{\text{inj}} < \Phi^*_{\text{sol}}$

Gradient elution at CPA can occur only if $\Phi^*_{\text{sol}} < \Phi_{\text{CR}}$

Otherwise, Φ_{CR} does not exist and elution is MW-dependent

(Armstrong et.al., 1984)
How to control the transition from LAC to GE at CPA

Transition point: \(Q \sim 1 \)

\(Q < 1 \) - retention depends on molar mass \(M \) (LAC)

\(Q > 1 \) (CPA)

\[
Q = \frac{2R_g^2}{\alpha D} \times \frac{d\varepsilon}{d\Phi} \times \Phi'
\]

Transition to CPA occurs faster (at lower \(M \)) for:

- narrow pores (low \(D \))
- steep gradient (high \(\Phi' \))
- high selectivity (high \(\frac{d\varepsilon}{d\Phi} \))

\(R_g \) - radius of gyration

\(D \) - pore diameter

\(\varepsilon \) - segment interaction energy

\(\Phi' \) - gradient rate
Effect of operating conditions

Elution of narrow polystyrenes at NovaPak® Silica

Hexane – THF gradient (0 -100%) over 10 min

Theory vs. Experiment

Effect of gradient rate: shallower gradient – later transition to CPA
- IPC at adsorption conditions (LAC): separation by M, not size, but for oligomers only

- Φ_{CR} depends on T, but $d\varepsilon/dT << d\varepsilon/d\Phi$

- Temperature gradient should be much more effective in separation by MW
Temperature vs. solvent gradients

TGIC of narrow polystyrenes at Symmetry® C18

T' = 2°C/min, flow rate 1 ml/min, Φ_{isocr} = 44% THF, T_{CR} = 60°C

- Able to resolve high M species
- Solvent gradient is still useful to identify critical conditions
- Intrinsic relation between solvent & temperature gradient
- TGIC could be coupled to SEC in 2D setting: SEC-IPC for branching analyses
Gradient elution at CPA

Applications

• Separation of polymer blends
• Separation of telechelic polymers by functional groups
• Separation of copolymers by chemical composition and microstructure, e.g. Blockiness
• Copolymer purification by flesh chromatography based on IPC
• Separation of nanoparticles by surface chemistry

Benefits

• Easiest way to find CPA
• Broad range of eluents (including non-solvents)
• Practically no limitation on MW
• Superb resolution, especially at narrow pore columns
• No peak splitting or some other chromatographic artefacts

Potential problems

• Break-through effect
• Multiple interaction mechanisms for complex polymers
• Competition with dissolution mechanism of retention for non-solvents
Separation of poly(alkyl methacrylate) blend (MW ~ 300K) at Symmetry® C_{18}

ACN – THF gradient (0 – 100%) over 30 minutes

Brun, Alden, J. Liq. Chrom 2002
Efficiency and resolution on narrow pores ($D \sim 6 \text{ nm}$)

Separation of ultra-high $M (> 10^6)$ polyacrylates at Nova-Pak® C_{18}

ACN – THF (0 -100%) over 10 min

Elution time, min

Eluent composition (THF, %)

Acrylate copolymers (core-shell) blend

Only “flower” conformations contributes to retention

Brun, Alden, J. Liq. Chrom 2002
Separations by end-groups: isocratic vs. gradient

4-arm PEGs with OH- and Cl-ends

Water-ACN at XTerra® C₁₈

Isocratic elution (LCCC)

- **water/ACN (60.1/39.9, v/v)**
- **number of chlorine ends**

Gradient elution

- **water – ACN gradient: 20%ACN -100%ACN**
- **number of chlorine ends**
Theoretical prediction of gradient elution of PEGs with various end-groups.
• Critical point of adsorption for statistical copolymers

• Separation by chemical composition (chemical composition distribution)

• Separation by microstructure (blockiness)
• **Statistical copolymer**
 - Contains a single CPA (like in homopolymer)
 - CPA of statistical copolymers depends on chemical composition and microstructure (blockiness) of polymer chains

• **Block-copolymer**
 - Does not contain a single CPA, but each individual block has its own CPA
 - Retention in gradient elution depends on MW and composition
 - Could be separated by block-length in gradient mode

• **Effect of blockiness on retention in gradient elution**
 - Always increases retention
 - Elution time at same chemical composition: \textit{alternating < statistical < block-copolymer}

• **Practical implication**
 - Gradient elution allows for separation by chemical composition and microstructure

Y. Brun, J. Liq. Chrom., 1999
Y. Brun, P. Foster, JSS, 2010
Chromatographically, statistical copolymers behave similar to homopolymers: they contain CPA.

Silasorb 600 Silica, different hexane-CHCl₃ compositions

Y. Brun, J. Liq. Chrom., 1999
RAFT polymerization of 2-EHA/n-BA (50/50) statistical copolymers

\[
\text{dwt/d(logM)}
\]

\[
\begin{align*}
\log M & : 3.4, 3.6, 3.8, 4.0, 4.2, 4.4, 4.6 \\
\end{align*}
\]

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{Sample} & \text{Mn} & \text{Mw} & \text{PD} & \text{Conv (1H-NMR)} \\
\hline
\text{Stat-1} & 6450 & 7278 & 1.13 & <1 \\
\text{Stat-2} & 8694 & 9617 & 1.11 & <1 \\
\text{Stat-3} & 11585 & 12638 & 1.09 & 3 \\
\text{Stat-4} & 13240 & 14657 & 1.11 & 5 \\
\text{Stat-5} & 14540 & 15856 & 1.09 & 12 \\
\text{Stat-6} & 15289 & 16734 & 1.09 & 73 \\
\text{Stat-7} & 16065 & 17704 & 1.10 & 89 \\
\text{Stat-8} & 17107 & 18918 & 1.11 & 95 \\
\hline
\end{array}
\]

\[
\begin{array}{c}
\text{CH}_3 \text{COOCH}_{2} \text{CH}_{2} \text{CH}_{2} \text{CH}_{2} \text{CH}_{3} \\
\text{CH}_{2} \text{CH} \quad \text{H}_{3} \text{CCH}_{2} \quad \text{CH} \text{CH}_{2} \text{CH}_{2} \text{CH}_{2} \text{CH}_{2} \text{CH}_{3} \\
\end{array}
\]
Critical Point of Adsorption (CPA)

THF-ACN (60/40)

$\Phi_{CR, \text{stat}} = 60\% \text{THF}$

Elution time, min (flow rate 0.25ml/min)

Elution at different compos. Φ (THF,\%):

- THF-ACN (60/40)
- $\Phi_{CR, \text{stat}} = 60\% \text{THF}$
- Critical Point of Adsorption (CPA)
- Elution at different compositions Φ (THF,\%):
XTerra® C8, ACN – THF (0 -100%) over 10 min

Elution time, min (flow rate 1 ml/min)

\[\Phi_{CR, PBA} = 42\% \]
\[\Phi_{CR, stat} = 60\% \]
\[\Phi_{CR, PEHA} = 68\% \]

Effect of MW on retention
Stat. 2-EHA/n-BA copolymers at different C₁₈ columns

ACN – THF (0 -100%) at different gradients

Effect of Gradient Rate

Column: XTerra ® 127A
Gradient time: 5 min, 10 min, 15 min, 20 min

Effect of Pore Size

Columns: Symmetry ® 300A, XTerra ® 127A, Nova-Pak ® 60A
Gradient time: 10 min
Ethylene-Methyl Acrylate Copolymers at Nova-Pak® C₁₈
mobile phase gradient: EtAc/MeOH (50/50)-toluene (50 - 100%) over 10 min

Y. Brun, M. Pottiger, Macrom. Symp., v. 282, 2009
RAFT polymerization of A/B block-copolymers

A (2-EHA)

B (n-BA)

Sample Mn Mw PD % 2-EHA

<table>
<thead>
<tr>
<th>Sample</th>
<th>Mn</th>
<th>Mw</th>
<th>PD</th>
<th>% 2-EHA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block 1 (Homopol A)</td>
<td>7117</td>
<td>7786</td>
<td>1.094</td>
<td>100.00</td>
</tr>
<tr>
<td>Block 2</td>
<td>7548</td>
<td>8569</td>
<td>1.135</td>
<td>91</td>
</tr>
<tr>
<td>Block 3</td>
<td>8482</td>
<td>9660</td>
<td>1.139</td>
<td>81</td>
</tr>
<tr>
<td>Block 4</td>
<td>9256</td>
<td>10629</td>
<td>1.148</td>
<td>73</td>
</tr>
<tr>
<td>Block 5</td>
<td>10169</td>
<td>11811</td>
<td>1.161</td>
<td>66</td>
</tr>
<tr>
<td>Block 6</td>
<td>11293</td>
<td>13666</td>
<td>1.210</td>
<td>57</td>
</tr>
<tr>
<td>Block 7</td>
<td>11801</td>
<td>14585</td>
<td>1.236</td>
<td>53</td>
</tr>
<tr>
<td>Block 8</td>
<td>12127</td>
<td>15473</td>
<td>1.276</td>
<td>50</td>
</tr>
</tbody>
</table>
Composition affects retention stronger than MW
Effect of copolymer microstructure on gradient elution

Statistical and block- 2-EHA/n-BA (50:50) copolymers

Novo-Pak\textregistered Silica, Hexane – THF (0 -100\%) over 10 min

XTerra\textregistered C\textsubscript{18}, ACN-THF (0 -100\%) over 10 min

CPA depends on microstructure: separation by CPA = separation by blockiness

Blockiness always increases retention
Effect of copolymer microstructure on gradient elution

Statistical and block styrene/MMA (50/50) copolymers

Nova-Pak® Silica, Hexane – THF (0-100%) over 10 min

- PS (107K)
- Stat (91K)
- PMMA (103K)

Nova-Pak® C_{18}, ACN-THF (0-100%) over 10 min

- Block (93K)
- Block (407K)
- PMMA
- Stat (91K)
- PS

Retention of block-copolymers increases with MW

Brun, Foster, JSS, 2010
How to control microstructure of condensation copolymers?

"Monomer first": traditional copolycondensation should produce statistical copolymer

"Oligomer first": chain extension in melt may produce blocky copolymers if transesterification is suppressed by phase separation

Gradient elution of “monomer first” copolymers

FluoroFlash F₈, water-HFIP

UV chromatograms

- mol %F₁₆–iso:
 - 10
 - 25
 - 50
 - 90
 - 100

- Minutes

Chemical composition calibration curve (MW independent)

- F₁₆–iso in copolymer (mol%)
- MP composition, HFIP%
- Polynomial fit

Separation of statistical copolymers by chemical composition (elution at CPA)
Chromatographic identification of copolymer microstructure

PTT

Statistical “monomer first”
50 mol%

Blocky “oligomer first”
50 mol%
Purification based on step-wise flash IPC

Purification of St/MMA copolymer from residual homopolymers

ELSD Chromatograms in Hexane-THF Gradient on Silica column
Free polymer chains grafted within the monolith pores provide higher degree of interaction between nanoparticle and column.

- Monolith column produce better recovery for nanoparticles
- Rigid surface provides minimal tangential nanoparticle/column interaction
- Currently commercially available monoliths from styrene-divinyl crosslinked gel contain relatively short chains. Monoliths with grafted flexible chains are needed
- Recently done at the Molecular Foundry at Berkley National lab (Dr. Frantisek Svec)
Separation of colloidal silica coated with mix of phenyl- and aminophenylsilane

PhTMS / APhTMS ratio:

- **Mobile phase:** toluene-DMAc gradient
- **Column:** BMA/EDMA monolith grafted with PMMA chains (F. Svec, Berkley)

- Long and flexible polymer chain functional groups (bonded phase) produce “reversed” critical point of adsorption.
- Nanoparticle is “swallowed” by these chains through multiple attachment mechanism

First reported at HPLC 2012