Analysis of Fragile Ultra-High Molar Mass Polymers by Hydrodynamic Chromatography

Amandaa K. Brewer

October 22, 2015
Particle size and shape of polymers and colloids with a molar mass $> 10^6 \text{ g/mol}$.

Particle size and shape play a role in:
- Environmental and quality control concerns
- Development of new materials
- Control of material processing
- End-use properties
Ultra-High Molar Mass Polymers and Colloids

Particle size and shape of polymers and colloids with a molar mass > 10^6 g/mol.

Particle size and shape play a role in:
- Environmental and quality control concerns
- Development of new materials
- Control of material processing
- End-use properties

Methodology and Limitations:
- Sieving
- Sedimentation
- Microscopy
- Laser Diffractions
- Cost
- Speed
- Complexity
- Accuracy
- Resolution

String-of-pearl Colloidal Silica

SNOWTEX® ST-PS-M
- Nissan Chemical Industries

SiO₂ in water

Particle Size (via TEM)
- “Pearl” Diameter: 18-25 nm
- “String” Length: 80-150 nm

Particle Shape (via TEM)
- String-of-pearl colloidal silica

Morphology applications
- Protein complexes
- Vesicles
- Bacteria
- Synthetic polymers
- Biopolymers

End-use Properties
- Fracture toughness
- Polish Retention
Multi-Detector Size Exclusion Chromatography

Columns
Multi-Detector Size Exclusion Chromatography

- Multi-Angle Light Scattering (MALS)
- Quasi-Elastic Light Scattering (QELS)

Columns
Multi-Detector Size Exclusion Chromatography

- Multi-Angle Light Scattering (MALS)
- Quasi-Elastic Light Scattering (QELS)
- Differential Viscometry (VISC)

Columns
Multi-Detector Size Exclusion Chromatography

- Multi-Angle Light Scattering (MALS)
- Quasi-Elastic Light Scattering (QELS)
- Differential Refractometry (DRI)
- Differential Viscometry (VISC)
Multi-Detector Size Exclusion Chromatography

Multi-Angle Light Scattering (MALS)

Quasi-Elastic Light Scattering (QELS)

Differential Refractometry (DRI)

Differential Viscometry (VISC)

Columns

MALS

QELS

VISC + MALS + DRI

DRI + MALS

R_G

R_H

R_η

M
Multi-Detector Size Exclusion Chromatography (SEC/RI/MALS)

<table>
<thead>
<tr>
<th>Method</th>
<th>$M_w (\times 10^8 \text{ g/mol})$</th>
<th>$R_{G,Z} (\text{nm})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-Line MALS</td>
<td>2.05 ± 0.15</td>
<td>101 ± 6</td>
</tr>
</tbody>
</table>

Multi-Detector Size Exclusion Chromatography

SEC/RI/MALS

<table>
<thead>
<tr>
<th>Method</th>
<th>$M_w \times 10^8$ g/mol</th>
<th>R_g, Z (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-Line MALS</td>
<td>2.05 ± 0.15</td>
<td>101 ± 6</td>
</tr>
<tr>
<td>SEC/MALS (1.0 mL/min)</td>
<td>1.00 ± 0.08</td>
<td>64 ± 3</td>
</tr>
</tbody>
</table>

Multi-Detector Size Exclusion Chromatography

SEC/RI/MALS

<table>
<thead>
<tr>
<th>Method</th>
<th>$M_w \times 10^8$ g/mol</th>
<th>$R_{G,Z}$ (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-Line MALS</td>
<td>2.05 ± 0.15</td>
<td>101 ± 6</td>
</tr>
<tr>
<td>SEC/MALS (1.0 mL/min)</td>
<td>1.00 ± 0.08</td>
<td>64 ± 3</td>
</tr>
<tr>
<td>SEC/MALS (0.5 mL/min)</td>
<td>1.44 ± 0.02</td>
<td>79 ± 2</td>
</tr>
</tbody>
</table>

![Graph](image)

Multi-Detector Size Exclusion Chromatography

SEC/RI/MALS

<table>
<thead>
<tr>
<th>Method</th>
<th>$M_w \times 10^8$ g/mol</th>
<th>$R_{G,Z}$ (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-Line MALS</td>
<td>2.05 ± 0.15</td>
<td>101 ± 6</td>
</tr>
<tr>
<td>SEC/MALS (1.0 mL/min)</td>
<td>1.00 ± 0.08</td>
<td>64 ± 3</td>
</tr>
<tr>
<td>SEC/MALS (0.5 mL/min)</td>
<td>1.44 ± 0.02</td>
<td>79 ± 2</td>
</tr>
<tr>
<td>SEC/MALS (0.25 mL/min)</td>
<td>1.41 ± 0.05</td>
<td>83 ± 3</td>
</tr>
</tbody>
</table>

Multi-Detector Size Exclusion Chromatography

SEC Limitations

- Possible degradation due to flow rate limitations, leading to a skewed molar mass distribution.

- Extremely long analysis times for ultra high molar mass polymers (> 2 hrs per injection.)
Multi-Detector Size Exclusion Chromatography

SEC Limitations

- Possible degradation due to flow rate limitations, leading to a skewed molar mass distribution.
- Extremely long analysis times for ultra high molar mass polymers (> 2 hrs per injection.)

Possible Solutions

- A gentler technique such as hydrodynamic chromatography or field-flow fractionation
- Less degradation of samples
- Faster analysis times.
Hydrodynamic Chromatography

HDC/ RI / MALS/ QELS/ VISc

• A solution-based separation method
 • Open tube
 • Packed (Non-porous beads)
• Separation is due to parabolic (Poiseuille) flow profile in an open tube channel.

Hydrodynamic Chromatography

HDC/ RI / MALS/ QELS/ VISC

- Analytes are sampled in a size-dependent manner

Hydrodynamic Chromatography

HDC/ RI / MALS/ QELS/ VISC

- Analytes are sampled in a size-dependent manner
- Small particles sample region close to the walls, where the flow is stagnant
- Large particles remain nearer to center where the flow is faster

Hydrodynamic Chromatography

Advantages of HDC
- Low-cost (depending on detectors)
- Relatively Fast
- Characterize based on molar mass or particle size
- Ideal for particles/polymers with $M > 10^6$ g/mol

Major Disadvantage of HDC
- Non-absolute nature (calibrant-relative)
 - Solution: absolute detection methods
<table>
<thead>
<tr>
<th>Method</th>
<th>$M_w \times 10^8$ g/mol</th>
<th>$R_{G,Z}$ (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-Line MALS</td>
<td>2.05 ± 0.15</td>
<td>101 ± 6</td>
</tr>
</tbody>
</table>
Multi-Detector Hydrodynamic Chromatography

HDC/ RI / MALS/ QELS/ VISC

<table>
<thead>
<tr>
<th>Method</th>
<th>$M_w \times 10^8$ g/mol</th>
<th>$R_{G,Z}$ (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-Line MALS</td>
<td>2.05 ± 0.15</td>
<td>101 ± 6</td>
</tr>
<tr>
<td>HDC/MALS (1.0 mL/min)</td>
<td>2.08 ± 0.03</td>
<td>119 ± 2</td>
</tr>
</tbody>
</table>

Multi-Detector Hydrodynamic Chromatography

HDC/ RI / MALS/ QELS/ VIS C

<table>
<thead>
<tr>
<th>Method</th>
<th>$M_w \times 10^8$ g/mol</th>
<th>$R_{G,Z}$ (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-Line MALS</td>
<td>2.05 ± 0.15</td>
<td>101 ± 6</td>
</tr>
<tr>
<td>HDC/MALS (1.0 mL/min)</td>
<td>2.08 ± 0.03</td>
<td>119 ± 2</td>
</tr>
<tr>
<td>HDC/MALS (0.5 mL/min)</td>
<td>2.09 ± 0.14</td>
<td>124 ± 1</td>
</tr>
</tbody>
</table>

Multi-Detector Hydrodynamic Chromatography

HDC/ RI / MALS/ QELS/ VI SC

\[\text{RI} \propto c \]
\[\text{MALS} \propto M \times c \]

Multi-Detector Hydrodynamic Chromatography

HDC/ RI / MALS/ QELS/ VISC

Detector response (V)

Retention volume (mL)

RI \propto c

MALS \propto M \times c

Polymeric Radii

MALS $\rightarrow R_G$

Root mean square distance of an array of atoms from their common center of mass

$$R_G = \left[\left(\frac{1}{n+1} \sum_i (r_i - R_{cm})^2 \right) \right]^{1/2}$$

- $n =$ number of bond in polymer backbone
- $r_i =$ location of an individual atom or group of atoms
- $R_{cm} =$ the location of the center of mass
Polymeric Radii

MALS → R_G
Root mean square distance of an array of atoms from their common center of mass

$$R_G = \left[\left(\frac{1}{n+1} \right) \sum_i (r_i - R_{cm})^2 \right]^{1/2}$$

- n = number of bond in polymer backbone
- r_i = location of an individual atom or group of atoms
- R_{cm} = the location of the center of mass

QELS → R_H
Radius of an equivalent hard sphere that has the same translational diffusion coefficient (D_T) as a macromolecule.

$$R_H = \frac{k_B T}{6\pi \eta_s D_T}$$

- k_B = Boltzman’s Constant
- η_s = Viscosity of the solvent
- D_T = Translational Diffusion Coefficient
Polymeric Radii

MALS → R_G
Root mean square distance of an array of atoms from their common center of mass

\[
R_G = \left[\frac{1}{n+1} \sum (r_i - R_{cm})^2 \right]^{1/2}
\]

- n = number of bond in polymer backbone
- r_i = location of an individual atom or group of atoms
- R_{cm} = the location of the center of mass

QELS → R_H
Radius of an equivalent hard sphere that has the same translational diffusion coefficient (D_T) as a macromolecule.

\[
R_H = \frac{k_B T}{6\pi \eta_s D_T}
\]

- k_B = Boltzmann’s Constant
- η_s = Viscosity of the solvent
- D_T = Translational Diffusion Coefficient

VISC → R_η
Radius of a solid sphere that increases the fluid viscosity by the same amount as does the macromolecule or particle.

\[
R_\eta = \left(\frac{3[\eta]M}{10\pi N_A} \right)^{1/3}
\]

- $[\eta]$ = Intrinsic viscosity
- M = Molar mass
- N_A = Avogadro’s number
Multi-Detector Hydrodynamic Chromatography

Dimensionless Ratio

Dimensionless Ratios

VISC/MALS: \(R_{\eta,w}/R_{G,z} \)

Provides information about the structure or compactness

MALS/QELS: \(\rho \equiv R_{G,z}/R_{H,z} \)

Provides information about the shape
Dimensionless Ratios

VISC/MALS: $R_{\eta,w}/R_{G,z}$

MALS/QELS: $\rho \equiv R_{G,z}/R_{H,z}$

<table>
<thead>
<tr>
<th>$R_{\eta,w}/R_{G,z}$</th>
<th>Compactness Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.30</td>
<td>Hard Sphere</td>
</tr>
<tr>
<td>0.42-0.77</td>
<td>Sample</td>
</tr>
<tr>
<td>0.3-0.4</td>
<td>Stiff Rod</td>
</tr>
</tbody>
</table>

Dimensionless Ratios

<table>
<thead>
<tr>
<th>VISC/MALS: $R_{\eta,w}/R_{G,z}$</th>
<th>MALS/QELS: $\rho \equiv R_{G,z}/R_{H,z}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{\eta,w}/R_{G,z}$</td>
<td>Compactness</td>
</tr>
<tr>
<td>1.30</td>
<td>Hard Sphere</td>
</tr>
<tr>
<td>0.42-0.77</td>
<td>Sample</td>
</tr>
<tr>
<td>0.3-0.4</td>
<td>Stiff Rod</td>
</tr>
<tr>
<td>1.36-2.24</td>
<td>Prolate Ellipsoid</td>
</tr>
<tr>
<td>1.67-3.66</td>
<td>Sample</td>
</tr>
<tr>
<td>2.0-3.5</td>
<td>Non-overlapping beads on a random coil</td>
</tr>
</tbody>
</table>

Strings-of-pearls with varying degrees of polymerization (2 to 5) plus a large number of unattached “pearls”.

Conclusions

Multi-detector HDC was successfully used to determine the size, shape, and structure/compactness of particles varying in molar mass, size, shape, and structure as a function of the elution profile.

HDC provides accurate and complete characterization of molar mass, size, shape, and structure for fragile particle assemblies where SEC fails, in a fraction of the time needed by methods such as TEM.
Acknowledgements

- Department of Chemistry and Biochemistry Florida State University
- Striegel Research Group
- Nissan Chemical America Corp.
- Agilent/ Polymer Laboratories
- Wyatt Technologies
- ACS Petroleum Research Grant 1-1312-0050

Disclaimer

The statements, technical information and recommendations contained herein are believed to be accurate as of the date hereof. Since the conditions and methods of use of the information referred to herein are beyond our control, Arkema expressly disclaims any and all liability as to any results obtained or arising from any reliance on such information; NO WARRANTY OF FITNESS FOR ANY PARTICULAR PURPOSE, WARRANTY OF MERCHANTABILITY, OR ANY OTHER WARRANTY, EXPRESS OR IMPLIED, IS MADE CONCERNING THE INFORMATION PROVIDED HEREIN. The user should thoroughly test any application before commercialization. Nothing contained herein constitutes a license to practice under any patent and it should not be construed as an inducement to infringe any patent, and the user is advised to take appropriate steps to be sure that any proposed action will not result in patent infringement.

© 2015 Arkema Inc.