HPLC - 液相色谱入门

什么是液相色谱?

历史概述和定义

液相色谱的定义是二十世纪早期由俄罗斯植物学家 Mikhail S. 茨维特提出的。他最先尝试在装满颗粒的柱子上使用溶剂来分离从植物中提取的化合物[树叶色素]。茨维特用颗粒填满开口的玻璃柱。他发现两种特殊的材料,粉笔末(碳酸钙)和氧化铝很有用。他将样品[混匀植物叶的溶剂提取物]倒入柱中,并让样品流过颗、粒床。随后加入纯溶剂。随着样品由于重力自上而下流过柱子,可看到不同颜色的谱带被分开,因为有些组分比另外一些移动得快。他将这些分开的不同颜色的谱带与样品中原有的不同化合物相关联。他还根据每一种化合物对填料的化学亲和性强弱,提出了分析这些化合物的分离规律。与颗粒填料有较强亲和性的化合物移动慢,与溶剂有较强亲和性的化合物移动快。这个过程可这样描述:样品中的化合物在流动的溶剂(流动相)与固体颗粒(固定相)间的分布不一样。这样使每一种化合物以不同的速度移动,从而产生了化合物之间的分离。

茨维特使用色谱法 chromatography [来自希腊字, chroma 意思是颜色, graphy 意思是记录 - 直译为颜色记录] 来描述他的彩色试验。[令人好奇的是, 俄罗斯名字茨维特意思是颜色。]今天,液相色谱法,以各种形式,已成为分析化学中最有力的工具之一。

技术1. 样品被点在固定在玻璃板上的薄层色谱颗粒[固定相]上,并流过薄层[图 B]。玻璃板的底端放置在溶剂中。由毛细作用产生的流动使溶剂[流动相]扩散到干燥的颗粒层并沿玻璃板向上移动。这种技术被称为薄层色谱法或 TLC。

技术 2. 在图 C 中, 样品被点在纸上[固定相]。溶剂[流动相] 加在样品点的中心以产生向周围的辐射流动。这是纸层析的一种方式。[传统的纸层析色谱和直线流动的薄层色谱是类似的操作方式。]上图中,相同的黑色 FD 和 C 染料被点在纸上。

图 C: 纸层析法

当和薄层色谱板比较的时候,请注意这种特殊纸张分离能力的区别。绿色圆环表示这张纸无法分离黄色和蓝色染料,但它可以将红色染料分离开来。下图中,由同样的黄色和蓝色染料组成的一个绿色样品点在纸上。如你能预料的,这张纸无法分离这两个染料。在图中,由红色和蓝色组成的紫色样品被点在纸上,它们被分离得
很好。

技术3.在这个最有效的方法中,样品流进一个柱子或填有适当颗粒[固定相]的柱管装置。这些颗粒称为色谱填料。溶剂[流动相]流过这个装置。在固相萃取中[SPE],样品被装入柱管里,溶剂携带样品流出这个装置。正如在茨维特的试验中,样品中化合物由于在管路中的流动速度不同而得以分开。黑色样品被放入柱管里。每一步使用不同溶剂得到分离。

 

图 D-1: 柱色谱法 - 固相萃取 [SPE]

当使用管路的形式时,有几种方法可以产生流动。重力或真空可用在不能承受压力的柱子上。特别是,本试验中使用的颗粒粒径较大[大于五十微米],所以产生的流动阻力很小。开口玻璃柱[茨维特的实验]是个典型的例子。除此之外,小型塑料柱,典型的例子是针筒的形状,可装入填充物颗粒用于分离样品。这种方法称为固相萃取[SPE]。在此,管状的色谱装置称为固相萃取小柱,通常在真空助力下流动,被用来净化复杂样品以便进一步分析。要想提高分离能力,必须使用粒径小的填料颗粒[小于十微米]。然而,小颗粒对流动产生更大的阻力,所以要获得预期的溶剂流速,需要更高压力。必须设计能承受更高压力的泵和柱子。利用中高压力使溶剂流过色谱柱的方法,就称为 HPLC。

图 D-2: HPLC柱

什么是高效液相色谱法[HPLC]?

缩写 HPLC, 引自 Csaba Horváth 教授之后在 1970 年匹茨堡大会上的文章,原指在填料柱中产生所需的流速需要高压 (high-pressure) 这个事实。早期的泵只能承受 500 psi [35bar]。这就被称为高压液相色谱法[HPLC]七十年代早期取得极大进步。新型的高压液相色谱仪器可以承受 6,000 psi [400 bar]的压力,还能配上改进的进样器,检测器和色谱柱。高压液相色谱法确实开始成为二十世纪七十年代中晚期的普遍分析方法。随着这一期间不断的性能改进[更小颗粒,更高压力], 字母缩写保持一样,但全称变为高效 (high-performance) 液相色谱[HPLC]。高效液相色谱[HPLC]是目前分析化学最强大的工具之一。它能够分离、定性和定量任何可以溶解在液体中的化合物。今天,痕量化合物甚至低至千万分之一[ppt]也可。

 

下一页 >