LC-MS/MS Quantification of Intact Insulin like Growth Factor I (IGF-I) From Serum for Clinical Research

Library Number:
PSTR134965765
Author(s):
Nikunj Tanna, Khalid Khan, Mary Lame, Anthony Marcello, Ian Edwards, Mark Wrona
Source:
Waters
Content Type:
Posters
Content Subtype:
Other Symposium
Related Products:
 
 

Introduction:

Insulin-like Growth Factor I (IGF-I) is a 70 amino acid (7.6 kDa) peptide hormone, with 3 internal di-sulphide bonds. It plays a significant role in mediating the effects of Growth Hormone (GH), circulates at ng/mL levels, and is strongly bound to Insulin-like Growth Factor Binding Protein (IGFBP).

Historically, immunoassays have been used for quantification of IGF-I. In recent years, use of LC-MS for quantification of IGF-I has increased. Most labs using LC-MS use the surrogate peptide approach, with or without immuno-affinity extraction, followed by quantification of resulting signature peptides by analytical scale LC and a tandem quadrupole (TQ) instrument. Although widely accepted, digestion may not always be required for proteins under 10 kDa on a TQ. However, achieving relevant sensitivity levels for such intact proteins does require meticulous attention to sample preparation. The immuno-affinity extraction and the surrogate peptide workflows described in literature are complex and laborious, adding cost and complexity to the analysis.

High resolution mass spectrometry (HRMS) systems are usually the preferred platforms to perform intact protein analysis, but have rarely been used routinely for quantitative applications. With recent advances in MS instrumentation and software capabilities, use of HRMS for quantification is on the rise. Some labs have reported quantifying IGF-I using immuno-affinity extraction and followed by nano-flow LC and a HRMS system.

Here, we highlight a simplified sample preparation workflow using sample pretreatment, protein precipitation,  and solid phase extraction (SPE)  for the quantification of intact IGF-I from human serum using an analytical LC and a tandem quadrupole instrument. We further compare its performance characteristics to a targeted HRMS approach for quantification in clinical research.

 

Methods:

Sample Preparation: Plasma/serum was spiked at various concentrations (5-1,000 ng/mL) with IGF-I. Spiked samples (100 µL) were pretreated with 100 µL of 0.6% Sodium Dodaceyl Sulphate (SDS) and incubated at 37˚C for 1 hour. After incubation, 200 µL of Acetonitrile containing 5% Acetic Acid was added and the samples were vortexed, followed by centrifugation at 18,000 G for 10 minutes. A 300 µL aliquot of the resulting supernatant was added to a 2-mL 96 well plate containing 900 µL 5% Ammonium Hydroxide. The pretreated samples were then passed through a conditioned and equilibrated Oasis MAX µElution SPE plate, washed, eluted with 2 x25 µL and diluted with water before injection into the LC-MS system.

LC-MS analysis: Quantification of IGF-I was performed using a low dispersion LC, coupled to a TQ or a QTof HRMS system. Chromatographic separation was achieved using a sub-2 µm charged surface hybrid C18 column, (2.1 mm x 50 mm), at a flow rate of 0.4 mL/min using a linear gradient with 0.1% formic acid in water and acetonitrile. Total analysis time was 5 minutes.

 

Results:

Using the described sample preparation strategy, accurate quantification of IGF-I from 5-1,000 ng/mL was achieved on a TQ. Calibration curves were linear (1/x2 weighting) with r2 values >0.99 and mean accuracies between 99-102%. QC performance was excellent with accuracy ranges between 93-108% and CV’s < 10%, well within the acceptable guidelines. In addition, this assay was reproducible and robust across multiple days.

Similar performance characteristics were observed for an analytical LC-HRMS system. IGF-I was accurately quantified from 10-1,000 ng/mL using the targeted mode of the QToF system. Calibration curves were linear (1/x2 weighting) with r2 values >0.99 and mean accuracies between 98-103%. QC performance was excellent with accuracy ranges between 91-97% and CV’s < 10%

Conclusion

Here, we demonstrate a simple sample preparation approach combined with analytical flow LC and tandem-quadrupole MS for the fast, direct analysis and quantification of intact IGF-I from serum/plasma for clinical research.  This method eliminates the need for complex and costly sample preparation like protein digestion or affinity. The analytical sensitivity of (5 ng/mL), linear dynamic range, and excellent reproducibility of the method described reliably measure low endogenous and elevated levels of IGF-I in serum.

Additionally, the work highlighted also compares the robustness, sensitivities and bioanalytical performance of the TQ and QToF systems for quantifying intact proteins like IGF-I.

 

For Research Use Only.  Not for Use in Diagnostic Procedures.


Title Format File Size
Download PDF PDF 1075.07kB